
1

Graphs, Food Webs and 
Biodiversity

Midge Cozzens, Rutgers University
MBI

July 29, 2013



2

Indicators of Biodiversity
•One of the key goals of conservation biologists 
is preservation of biodiversity.
•But what is biodiversity?
•Long history of trying to define it.
•It is a multidimensional concept.
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Indicators of Biodiversity
•Traditional approaches to biodiversity consider:

–Richness = number of species
–Evenness = extent to which species are 
equally distributed
–Indicator species = organism that serves as a 
measure of environmental conditions
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Competition Graphs
•We will try to derive the “dimensions”

 
of 

biodiversity starting from properties of 
ecosystems, in particular normal, healthy 
competition between species. 
•Using food webs and competition graphs

–Arose from a problem of ecology.
–Joel Cohen 1968

•Key idea: Two species compete if they have a 
common prey.
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Competition Graphs of Food Webs
Food Webs

Let the vertices of a directed graph 
(digraph) be species in an ecosystem.

Include an arc from x to y if x preys on y.
Usual assumption for us: no cycles.

fox ant spear 
grass

deer

owl
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Competition Graphs of Food Webs

Consider a corresponding undirected graph.

Vertices = the species in the ecosystem

Edge between  a  and  b  if they have a common 
prey, i.e., if there is some  x  so that there are arcs 
from  a  to  x  and  b  to  x.
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Competition Graphs

More generally:

Given a digraph  D = (V,A)
(Usually assumed to be acyclic.)

The competition graph C(D)  has vertex set  V  
and an edge between  a  and  b  if there is an  x  
with arcs (a,x) ε

 
A  and  (b,x) ε

 
A.
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Interval Graphs

•A key idea in the study of competition graphs is the 
notion of interval graph. It arose from a problem in 
genetics posed by Seymour Benzer.
•Benzer’s Problem (1959): The problem was: How 
can you understand the “fine structure”

 
inside the 

gene without being able to see inside?
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Benzer’s Problem

•Classically, geneticists had treated the chromosome
as a linear arrangement of genes.

•Benzer asked in 1959: Was the same thing true
for the “fine structure”

 
inside the gene?
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Benzer’s Problem

At the time, we could not observe the fine structure 
directly.

•Benzer studied mutations.

•He assumed mutations involved “connected 
•substructures”

 
of the gene.

By gathering mutation data, he was able to surmise
whether or not two mutations overlapped.
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Benzer’s Problem

S1 S2 S3 S4 S5 S6

S1 1 1 0 0 0 0
S2 1 1 1 1 0 0
S3 0 1 1 1 0 0
S4 0 1 1 1 1 0
S5 0 0 0 1 1 1
S6 0 0 0 0 1 1

i,j entry is 1 if mutations Si

 

and Sj

 

overlap, 0 otherwise.
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Benzer’s Problem

S1

S2 S3

S4

S5

S6

S1 S2 S3 S4 S5 S6

S1 1 1 0 0 0 0
S2 1 1 1 1 0 0
S3 0 1 1 1 0 0
S4 0 1 1 1 1 0
S5 0 0 0 1 1 1
S6 0 0 0 0 1 1
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Benzer’s Problem
Can the fine structure of a gene be represented as 
an interval graph? We say that the graph is an 
interval graph if it is consistent with a linear 
arrangement.
That is: A graph is an interval graph if we can find 
intervals on the line so that two vertices are joined 
by an edge if and only if their corresponding 
intervals overlap.
•Interval graphs have been very important in 
genetics.   Long after Benzer’s problem was solved 
using other methods, interval graphs played a 
crucial role in physical mapping of DNA and more 
generally in the mapping of the human genome.
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Benzer’s Problem

•We need to find intervals on the line that have 
the same overlap properties

•Given a graph, is it an interval graph?

a b

c d
e

c

a b d e
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Benzer’s Problem
•The following is not an interval graph.

a

b c

x

y z
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Benzer’s Problem

The following is not an interval graph. 
Once we give intervals for a, b, c, y and 
z there is no room for x without 
overlapping b.

y
a b c

a

b c

x

y z
z
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Intersection of Boxes
More generally, we can study ways to represent 
graphs where the edges correspond to 
intersections of boxes in Euclidean space. 

The boxicity of G is the smallest p
so that we can assign to each vertex 
of G a box in Euclidean p-space
so that two vertices are neighbors
iff their boxes overlap. 

Well-defined (Roberts 1968) but hard to compute  
(Cozzens 1980). 
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Intersection of Boxes
•Interval graphs are the graphs of boxicity 1.

•Consider the graph C4

 

.

•It is not an interval graph. 

•However, it can be represented as the 
intersection graph of boxes in 2-space.

•So, boxicity of C4

 

is 2.

a b

cd

G = C4
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Intersection of Boxes
•C4

 

can be represented as the intersection graph 
of boxes in 2-space.

•So, boxicity of C4

 

is 2.

a b

cd

G = C4

a

b

c

d
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Factors Affecting Biodiversity
•Different factors determine a species’

 
normal 

healthy environment.
–Moisture
–Temperature
–pH
–…

•We can use each such factor as a dimension. 
•Then the range of acceptable values on each 
dimension is an interval.
•Each species can be represented as a box in 
Euclidean space.
•The box represents its ecological niche.



22

Factors Affecting Biodiversity
•The ecological niche is a box. 

Temp tt0 t1

Moisture m

m1

m0
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Factors Affecting Biodiversity

Temp tt0 t1

Moisture m

m1

m0

•Simplifying assumption: 
acceptable ranges on each 
dimension are independent 
of values on other 
dimensions.
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Factors Affecting Biodiversity
•The ecological niche is a box. 

Temp tt0 t1

Moisture m

m1

m0

p0

p1

pH p
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Competition
•Old ecological principle: Two species compete 
if and only if their ecological niches overlap.

•Joel Cohen (1968): 
–Start with an independent definition of 
competition
–Map each species into a box (niche) in k-

 space so competition corresponds to box 
overlap (niche overlap)
–Find smallest k that works.
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Competition
•Specifically, Cohen started with the competition 
graph as defined before.
•The question then becomes: What is the boxicity 
of the competition graph?
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fox

owl ant

deer spear grass

This is an interval graph. Thus, boxicity is 1.

fox

owl

ant

deer

spear grass
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Strait of Georgia, British Columbia, Canada
Due to Parsons and LeBrasseur
From Joel Cohen, Food Webs and Niche Space
Princeton University Press, 1978

1

2

3

4

5

6 7

Key:
1.

 
Juvenile Pink Salmon

2.
 

P. Minutus
3.

 
Calanus & Euphasiid 
Barcillia

4.
 

Euphasiid Eggs
5.

 
Euphasiids

6.
 

Chaetoceros Socialis 
& Debilis

7.
 

Mu-Flagellates
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Strait of Georgia, British Columbia, Canada

1

2

3

4

5

6 7

Competition graph

1 4

3 5

2

6 7
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Strait of Georgia, British Columbia, Canada

Competition graph

1 4

3 5

2

6 7

What is the boxicity 
of the competition 
graph?
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Strait of Georgia, British Columbia, Canada

Competition graph

1 4

3 5

2

6 7

This is an interval 
graph. Thus, its  
boxicity is 1.

1

4

3

5

2
6

7
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Malaysian Rain Forest
Due to Harrison
From Cohen, Food Webs and 
Niche Space

Key
1.

 
Canopy –

 
leaves, fruits, 

flowers
2.

 
Canopy animals –

 
birds, 

bats, etc.
3.

 
Upper air animals –

 insectivores
4.

 
Insects

5.
 

Large ground animals –
 

large 
mammals & birds

6.
 

Trunk, fruit, flowers
7.

 
Middle-zone scansorial 
animals

8.
 

Middle-zone flying animals
9.

 
Ground –

 
roots, fallen fruit, 

leaves
10.Small ground animals
11.Fungi

5 2 3 8 7 10

1
4 12

9

11
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Malaysian Rain Forest
Due to Harrison
From Cohen, Food Webs and 
Niche Space

Key
1.

 
Canopy –

 
leaves, fruits, 

flowers
2.

 
Canopy animals –

 
birds, 

bats, etc.
3.

 
Upper air animals –

 insectivores
4.

 
Insects

5.
 

Large ground animals –
 

large 
mammals & birds

6.
 

Trunk, fruit, flowers
7.

 
Middle-zone scansorial 
animals

8.
 

Middle-zone flying animals
9.

 
Ground –

 
roots, fallen fruit, 

leaves
10.Small ground animals
11.Fungi

5 2 3 8 7 10

1
4 6

9

11



34Malaysian Rain Forest

5 2 3 8 7 10

1
4 12

9

11

Competition Graph
11

9

4 5

10

2

7 3

8

1 6
34Malaysian Rain Forest

Competition Graph
11

4 5

10

2

7 3

8

1

5 2 3 8 7 10

1
4 6

9

11

12
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Competition Graph
11

9

4 5

10

2

7 3

8

1 6

What is the boxicity 
of the competition 
graph?
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Competition Graph
11

9

4 5

10

2

7 3

8

1 6

This is an interval 
graph. Thus, its 
boxicity is 1. 

11

4

5 2 7

8

3

10
1 6 9
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Structure of Competition Graphs
•In the first 12 years after this problem was 
introduced, every food web studied was found to 
have a competition graph that was an interval 
graph.
•In 1976, a Rutgers undergraduate, Gordon Kruse, 
found the first example of a food web whose 
competition graph was not an interval graph.
It arose from a complex set of habitats.
•Generally:  Food webs arising from “single 
habitat ecosystems”

 
(homogeneous ecosystems) 

have competition graphs that are interval graphs. 
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Structure of Competition Graphs
The remarkable empirical observation of 
Cohen’s that real-world competition graphs are 
usually interval graphs has led to a great deal of 
research on the structure of competition graphs 
and on the relation between the structure of 
digraphs and their corresponding competition 
graphs, with some very useful insights obtained.

Competition graphs of many kinds of digraphs 
have been studied. 

In most of the applications of interest, the 
digraphs studied are acyclic.
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Structure of Competition Graphs
•Statistical Explanations:

–Develop models for randomly generating 
food webs
–Calculate probability that the corresponding 
competition graph is an interval graph
–Much of Cohen’s Food Webs and Niche 
Space takes this approach.
–Cascade model developed by Cohen, 
Newman, and Briand. But Cohen and Palka 
showed that under this model, the probability 
that a competition graph is an interval graph 
goes to 0 as the number of species increases.
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Structure of Competition Graphs
•Graph-theoretical Explanations:

–Analyze the properties of competition graphs 
that arise from different kinds of digraphs.
–Characterize the digraphs whose 
corresponding competition graphs are interval 
graphs.
–Much known about the former problem.
–Latter problem remains the fundamental open 
problem in the subject.
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The Competition Number
Suppose  D  is an acyclic digraph. Then its 
competition graph must have an isolated vertex (a 
vertex with no neighbors).

Theorem: If  G  is any graph, adding sufficiently 
many isolated vertices produces the competition 
graph of some acyclic digraph. 
Proof:  Construct acyclic digraph  D  as follows. 
Start with all vertices of  G.  For each edge  {x,y}  
in  G,  add a vertex α(x,y) and arcs from  x  and  
y  to α(x,y).  Then  G  together with the isolated 
vertices  α(x,y)  is the competition graph of  D.
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a b

cd

G = C4

a b c d

α(a,b) α(b,c) α(c,d)

α(a,d)

D

a b

cd

C(D) = G U I4

α(a,b)

α(b,c)

α(c,d)

α(a,d)

The Competition Number
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The Competition Number
•Thus, D as shown in previous slide has a 
competition graph that is not an interval graph.
•In fact, there are examples of competition graphs 
of acyclic digraphs that have arbitrarily high 
boxicity.

–Just start with a graph of boxicity b.
–Add sufficiently many isolated vertices to 
make the graph into a competition graph.
(Adding isolated vertices does not change the 
boxicity.)

•Thus, the empirical observations tracing back 
to Joel Cohen are truly surprising.



44

The Competition Number

If  G  is any graph, let  k  be the smallest number 
so that  G U Ik

 

is a competition graph of some 
acyclic digraph. 

k = k(G)  is well defined.

It is called the competition number of  G.

Thus k(C4) = 4 from the previous example
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The Competition Number

Competition numbers and boxicity are known for 
many interesting graphs and classes of graphs.  

However:
Theorem (Cozzens 1980):  It is NP-complete to 
determine the boxicity of a graph, even if a graph 
has boxicity greater than or equal 2.
Theorem (Opsut 1982):

 
It is an NP-complete 

problem to compute  k(G). 
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The Competition Number
•Characterization of which graphs arise as 
competition graphs of acyclic digraphs comes 
down to the question: Given a graph, how many 
isolated vertices is it necessary to add to make it 
into a competition graph?

•There has been extensive work over the years on 
algorithms for calculating the competition 
number. 
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source 

Food Webs
•How one gathers data about food webs can 
influence your conclusions about competition 
graphs, biodiversity, etc.
•A community food web includes all predation 
relations among species. 
•In practice, we don’t always get all this data. We 
might start with some species, look for species 
they prey on, look for species they prey on, etc.
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source 

Food Webs
•Suppose F is a community food web.
•Let W be a set of species in F (ones we start with).
•Let X be the set of all species that are reachable by a 
path in F from vertices in W. 

–So, we start with vertex of W, find its prey, find 
prey of the prey, etc.

•Let Y be the set of all species that reach vertices of W 
by a path in F.

–So we start with vertex of W, find its predators, find 
predators of those predators, etc.
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source 

Food Webs
•Suppose F is a community food web.
•Let W be a set of species in F (ones we start with).
•Let X be the set of all species that are reachable by a 
path in F from vertices in W. 

–The subgraph induced by vertices of X is called the 
sink food web corresponding to W.

•Let Y be the set of all species that reach vertices of W 
by a path in F.

–The subgraph induced by vertices of Y is called the 
source food web corresponding to W.
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Data Gathering
a b c d

x
y z

e f

Community
food web F
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Data Gathering

Community
food web F

a b c d

x
y z

e f

W = {a,y}
What is the sink 
food web?

X = {a,x,e,f,y} 

Sink food web from W
a

e

x

f

y
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Data Gathering

Community
food web F

a b c d

x
y z

e f

W = {a,y}
What is the source 
food web?
Y = {a,b,c,y}

Source food web from W

b c

y

a
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source 

Food Webs
•Theorem (Cohen): A community food web has a 
competition graph that is an interval graph if and 
only if every sink food web contained in it does.

•However: A community food web can have a 
competition graph that is an interval graph while 
some source food web contained in it has a 
competition graph that is not an interval graph. 
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Data Gathering

b

a b c d

x
y z

e f

Community
food web F

e

a

cd

x
y
z

f

a

c

b d
x

y z e

f

The competition graph of F
is an interval graph.



55

Data Gathering
a b c d

x
y z

e f

Community
food web F

a b

cd

y

z

e

f

W = {e,f,y,z}
What is the competition graph 
of the source food web of W?
Y = {a,b,c,d,e,f,y,z}

Competition graph of the 
source food web from W 
This is not an interval graph.
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source 

Food Webs
•This surprising result points up some of the 
difficulties involved in understanding the 
structure of competition graphs.
•It also leads to interesting caveats about general 
conclusions using models that are tested with 
data.
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The Interval Graph Competition 
Graph Problem

•It remains a challenge (dating back to 1968) to 
understand what properties of food webs give rise 
to competition graphs of boxicity 1, i.e., interval 
graphs.
•In a computational sense this is easy to answer: 

–Given a digraph, compute its competition 
graph (easy)
–Determine if this is an interval graph (well 
known to be solvable in linear time)
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The Interval Graph Competition 
Graph Problem

•More useful would be results that explain the 
structural properties of acyclic digraphs that give 
rise to interval graph competition graphs.
•However, such results might be difficult to find:
•There is no list L (finite or infinite) of digraphs 
such that an acyclic digraph D has an interval 
graph competition graph if and only if does not 
have an induced subgraph in the list L. 
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Open Problems

•There are, however, results with extra 
assumptions about the acyclic digraph D.
•Example: It is useful is to place limitations on 
the indegree and outdegree of vertices (the 
maximum number of predator species and 
maximum number of prey species for any given 
species in the food web).  Is this reasonable 
however?  Then there are some results with 
forbidden lists L. (e.g., Hefner, et al., 1991).
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Biodiversity
•What are the implications of this work for the 
measurement of biodiversity?
•General Challenge: Can we “derive” 
“dimensions” of biodiversity from other 
important properties of ecosystems?
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