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Abstract-we consider the effect of changes of scale of measurement on the conclusion that a 
particular solution to a scheduling problem is optimal. The analysis in this paper was motivated by 
the problem of finding the optimal transportation schedule when there are penalties for both late and 
early arrivals, and when different items that need to be transported receive different priorities. We 
note that in this problem, if attention is paid to how certain parameters are measured, then a change 
of scale of measurement might lead to the anomalous situation where a schedule is optimal if the 
parameter is measured in one way, but not if the parameter is measured in a different way that seems 
equally acceptable. This conclusion about the sensitivity of the conclusion that a given solution 
to a combinatorial optimisation problem is optimal is different from the usual type of conclusion 
in sensitivity analysis, since it holds even though there is no change in the objective function, the 
constraints, or other input parameters, but only in scales of measurement. We emphasize the need 
to consider such changes of scale in analysis of scheduling and other combinatorial optimization 
problems. We also discuss the mathematical problems that arise in two special csses, where all 
desired arrival times are the same and the simplest case where they are not, namely the case where 
there are two distinct arrival times but one of them occurs exactly once. While specialized, these 
two examples illustrate the types of mathematical problems that arise from considerations of the 
interplay between scaletypes and optimisation. 

Keywords-Scheduling, Meaningfulness, Measurement, Earliness/tardiness penalties, Modeling. 

1. INTRODUCTION 

Sensitivity analysis has been used extensively in the literature to study the effects of small changes 

in the objective function on the optimality of a solution to an optimization problem such as a 
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scheduling problem. However, the choice of scale one uses to measure the input (e.g., kilograms 

versus pounds) could also affect the optimality of a solution. This issue has not been dealt 

with very often. A key point of this paper is the analysis of the effect on the optimality of a 

solution to a scheduling problem when an admissible transformation of scale of measurement is 

performed on scales used to measure the input to the objective function. We wish to show that 

considerations of scale change need to play a role in the analysis of scheduling problems and other 

similar problems of combinatorial optimization. A second main point of the paper is to show how 

challenging mathematical questions arise from these considerations and to analyze one of them 

in detail. 

In this paper, we consider a scheduling problem that was suggested by problems arising at 

the Air Mobility Command of the United States Air Force. Similar problems are of natural 

importance for all transportation companies that move packages or people, in the workplace 

where we schedule jobs, and so on. To be specific about the problem, we shall consider here, 

suppose that we wish to move a number of items (equipment, people) by vehicles (planes, trucks, 

trains, pipelines, etc.) from an origin to a destination. We assume that each item has a desired 

arrival time at the destination, and that we are penalized in some way for missing that time. 

The penalty can be applied only for a late arrival or, more generally, for both late and early 

arrivals, perhaps in a different way. Let us assume that we can only take a certain number of 

items from origin to destination each time that we schedule a trip (say because we have only a 

limited number of seats on each plane and only a limited number of planes). In principle, trips 

can have different lengths, though in this paper we shall restrict ourselves to the simple version 

of the problem in which all trips have the same length. Our goal is to minimize the total penalty. 

We also consider an added complication here, namely that the items have different priorities 

or status or importance. (Transporting fuel may be more important than transporting blankets. 

transporting a VIP more important than transporting an ordinary person.) If there are different 

priorities, the penalty for early or late arrival can depend upon the priority. 

The introduction of priorities adds a complication if we take into account the way we measure 

them. Namely, scales of measurement often have certain arbitrary choices (such as of unit or 

zero point). If we allow admissible transformations of scale, we should ask if the optimal solution 

to the scheduling problem remains unchanged. Mahadev, Pekec and Roberts [l] observed, in 

the context of single machine scheduling and under several models of penalty functions, that 

it is possible to have the anomalous situation where an optimal schedule under one scale of 

measurement is no longer an optimal solution after an admissible transformation of scale. We 

shall note that under some reasonable assumptions, a similar anomaly occurs in our problem, 

and we seek to discover conditions under which such anomalies can be avoided. We shall see that 

even in simple models where greedy-type algorithms can be used to obtain optimal solutions, the 

mathematical analysis involved in proving the nonexistence of such anomalies can be complex 

(and considerably more complex than that in [l]). We nevertheless obtain two interesting models 

for objective functions under which such anomalies can be avoided. Similar points are made in 

the context of general combinatorial optimization problems by Roberts [2,3]. However, we feel 

that the point needs to be repeated since not many researchers or practitioners seem to have been 

exposed to it. Moreover, we feel that it leads, in our present context, to interesting mathematical 

issues. 
A problem analogous to the one we are considering arises in the workplace if we have a number 

of tasks to perform, a number of processors on which to perform them, each task has a desired 

completion time, and we are penalized in some way for missing that time. We can apply the 

penalty only to tasks that end after their desired completion time, or also to tasks that end before 

this time. Tasks are to be scheduled nonpreemptively, i.e., cannot be interrupted once started. 

We have only a limited number of processors so we can only schedule a certain number of tasks 

at any given time. In principle, the tasks are allowed to have varying required processing times, 

though our assumption of 6xed trip length is equivalent to the assumption of constant processing 
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times, and tasks can have different priorities. We seek to schedule tasks to processors so that the 
total penalty is minimized. 

This paper is organized as follows. In Section 2, we introduce some formal terminology about 
scheduling problems and objective functions, and formulate precisely the problem we shall be 
considering here. In Section 3, we introduce the theory of scale-type in measurement and give 
some simple examples to show that admissible changes of scale can lead to changes of the optimal 
solution in scheduling problems of the type in which we are interested here. In Section 4, we 
make some remarks about the special case of constant desired arrival times or “common due 
dates”. In Section 5, we turn our attention to nonconstant desired arrival times, and we discuss 
one rather special example of such a problem to illustrate the technical difficulties involved in 
the analysis of invariance of optimality conclusions. Specifically, we consider the problem where 
all but one of the arrival times are the same. For this problem, we present conditions sufficient 
to guarantee that an optimal solution remains optimal after admissible change of scale. The 
problem considered in this section is quite specialized. The more general problem of arbitrary 
nonconstant desired arrival times is quite complicated, and it is hard to draw general conclusions 
about the types of issues with which we are concerned. We feel that analysis of this special case 
illustrates our points and at the same time shows some interesting mathematical issues that one 
is led to through considerations of the effect of change of scale on conclusions of optimality. In 
Section 6, we discuss for a more general penalty function, the special case where the common 
desired arrival time for all but one of the items is 1. Finally, Section 7 is devoted to a discussion 
of open problems and future directions for investigation. 

2. SCHEDULES AND OBJECTIVE FUNCTIONS 

To formulate our problem precisely, let us suppose that there are n items to be transported, 

andfori=l,..., n, let wi denote some measure of the priority or status of i. We always assume 
that priority is a positive real number. Suppose that there is a desired arrival time di for the ith 
item. For simplicity, we assume that the transport arrives only at positive integer times, called 
timeslots (thought of as the first time period, second time period, etc.). Thus, we assume that 
each di is a positive integer. In this paper, the transportation time will be assumed to be the same 
for each trip. The problem with differing transportation or processing times is of considerable 
importance and has been widely studied. At any given arrival time, there is a certain available 
capacity for transportation (number of seats on aircraft, number of processors for processing the 
task), and for simplicity, we assume that this is a fixed positive integer c. Thus, at any given time, 
at most c items can arrive at the destination. A schedule S is an assignment of a positive integer 
arrival (completion) time Ci to each item i, subject to the constraint that the number of Ci that 
can equal a given integer is at most c. We shall let C(S) = (Cl, . . . , Cn) = C, d = (di , . . . , d,,), 
and w = (wi,... , w,,). To compare one schedule to another, we use objective functions 

F(C~ ,..., c,,, WI,..., wn,dl, . . . . &)=F(C,w,d) 

that depend upon the schedule C(S) and the problem input w and d, and we seek to minimize 
these objective functions that are thought of as expressing a penalty for early and (possibly) late 
arrivals. When the problem input is understood, we denote F(C, w, d) by F(C). 

In this paper, we shall consider only objective functions that are summable in the sense that 
they can be expressed as F(C, w, d) = Cz, g(Ci, wi, di). We shall also emphasize summable 
objective functions that are separable in the sense that g can be expressed as 

s(C, w, d) = 
ht(w)f(C, 4, if C 2 d, 

h=(w)f(C,d), otherwise, 

for functions ht and h, defined on the positive reals and f(C, d) defined on N x N, where N is the 
set of positive integers. We shall assume throughout that hi(w) > 0 for i = t,e, for all w > 0. 
Often we will assume that the objective function is symmetric in the sense that ht = h,. 
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To give an example, the objective function 

F(C,w,d) = &J& - di, 
i=l 

is summable, separable, and symmetric. In this objective function, we simply use the weight,cd 

sum of the deviations between desired and scheduled arrival times, weighted by the priority of 

the items. Here, f(C,d) = ]C - d] and ht(w) = h,(w) = w. A similar objective function arises 

in single machine scheduling with earliness and tardiness penalties and “noncommon weights” 

and “symmetric penalties”. It is studied, for example, by Cheng [4), Emmons [5], Quaddus [6], 

Bettor, Gupta and Gupta [7], B k a er and &udder (81, Ahmed and Sundararaghavan (91, Hall and 

Posner [lo], and Hoogeveen and van de Velde [ll]. A variant of our first example is the objective 

function in which we use 

f(C*d) = 
]C-d], .ifCLd, 
o 

7 otherwise. 

Here, we do not penalize early arrivals. Still a third variant is the simple objective function in 

which we use 

f CC, 4 = 
1, if C # d, 

0, otherwise. 

Here, we do not penalize long deviations from the desired arrival time more than short ones. Still 

another simple objective function of interest is the one in which we use 

f(C,d) = 
y]C - d], if C > d, 
61c _ dl 

7 otherwise, 

where 7 and S are fixed positive reals. If ht and h, are constant functions, this objective function 

corresponds to the case of “nonsymmetric penalties” with “common weights” in single machine 

scheduling with earliness and tardiness penalties. It is studied, for example, by Panwalkar, Smith 

and Seidmann [12], Bagchi, Chang and Sullivan [13], and Emmons [5]. There has been some 

interest in the literature in nonlinear objective functions. An example would be the simple 

objective function in which we define f(C, d) = ]C - d12. 

The scheduling problem, as we have formulated is close to the scheduling problems that are 

widely studied in the literature, and we have tried to use notation consistent with that used 

in the literature. The main difference is how we handle priorities. Some survey papers on 

scheduling with objective functions are very similar to -those we use by Abdul-Razaq, Potts and 

van Wassenhove [14], Baker and Scudder [15], and Koulamas [16]. 

3. MEANINGFULNESS OF THE 

CONCLUSION OF OPTIMALITY 

It will be useful to adopt the language of measurement theory in discussing priority measure- 

ment. In using scales of measurement, we often make somewhat arbitrary choices such as of 

unit or zero point. One speaks of admissible transformations of scale as transformations of 

scale values that result from changes in these arbitrary choices. When the admissible transform& 

tions of scale correspond exactly to multiplication by a positive constant (as in the measurement 

of mass, such as when we switch from pounds to kilograms), we say we have a ratio scale. 

When the admissible transformations of scale correspond exactly to multiplication by a positive 

constant and addition of another constant (not necessarily positive) (as in the measurement of 

temperature, such as when we switch from fahrenheit to centigrade), we say we have an interval 

scale. In some cases, any strictly increasing transformation of scale is admissible, and in this 

case, we speak of an ordinal scale. The theory of scale-type was introduced into measurement 
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theory by Stevens [17-191. A general introduction to measurement theory can be found in the 
books by Krantz et aZ. (201, Roberts [21], Suppes et al. [22], and Lute et al. [23]. 

If the truth of a conclusion can depend upon some arbitrary choices involving scales of measure- 
ment, as for example about units or zero points, we would probably not want to put much weight 
behind that conclusion. In measurement theory, we call a statement using scales meaningful if 
its truth or falsity is unchanged after applying admissible transformations to all of the scales in 
the statement. Mahadev, PekeE and Roberts [l] show that in the case of the scheduling problem 
with earliness and tardiness penalties and without priorities, the conclusion that one schedule 
is optimal can be meaningless. Whether or not it is meaningful depends upon how we mea 
sure weights that arise in the objective functions. If priorities are a factor, then meaningfulness 
should also depend upon how we measure priorities. For further information about meaningful 
statements, the reader is referred to Roberts [3,24] and Lute et al. [23]. For other applications 
of this concept to problems of combinatorial optimization like the scheduling problems discussed 
here, see Roberts [2] and Cozzens and Roberts [25]. To give a simple example of the application 
of measurement theoretical ideas to the scheduling problem we have considered, let us suppose 
that measurement of priority is on a ratio scale. Then, we can ask whether a change of unit 
changes the conclusion that a given schedule is optimal. In our notation, this amounts to the 
question: if F(C, w, d) i F(D, w, d) for all schedules D and cr is a positive real number, then is 
F(C, crw, d) I F(D, CYW, d) for all schedules D? If F is a summable, separable objective function 
and if each hi satisfies 

hi(aw) = K(cw)hi(w), for (Y > 0 and K(o) > 0, (3.1) 

then if priority is measured on a ratio scale, it is meaningful to conclude that schedule C is optimal, 
i.e., the question has an affirmative answer. This is because F(D, aw, d) = K(cr)F(D, w, d) for 
all D. (Equation (3.1) arises in measurement theory (in many applied contexts, and originally 
in psychophysics). See (3,21,26-281 for details.) 

By way of contrast, suppose we have the summable, separable, symmetric objective function 
where c = 1, f(C,d) = ]C - d], and hi(w) = 2w-’ for all w, i = 1,2. If w = (1,2,2,2) and 
d = (1,2,2,2), then the conclusion that schedule C is optimal is meaningless if priorities are 
measured on a ratio scale. If C = (1,2,3,4), then F(C,w,d) = 6 and, it is easy to check, 
C is optimal. However, after a change of scale from w to (YW = 2w, F(C,Bw,d) = 24, while 
F(D,2w,d) = 22, where D = (4,1,2,3). Thus, D has a smaller penalty than C. The reader 
should note that we are not asserting that the objective function we have just analyzed arises 
in practical scheduling problems. In particular, the priority functions hi(w) = 2”‘-’ might be 
unrealistic. However, we are using this example to illustrate the point. It is not hard to show 
that summable, separable, symmetric objective functions with f(C, d) = ]C-d] and linear hi(w), 

which are much more realistic, lead to meaningful con’clusions of optimality if priorities are 
measured on a ratio scale. However, later we shall show that such objective functions can lead 
to meaningless conclusions of optimality if priorities are measured on an interval scale. 

It is a reasonable goal to give conditions on a scheduling problem w, d sufficient for the con- 
clusion of optimality to be meaningful. This turns out to be a difficult question, as we will 
illustrate in this paper by considering it for a simple case, namely when the vector d is of the 
form (d, d, . . . , d, k). 

We will adopt one convention about scale-type in what follows. Specifically, we only consider 

possible admissible transformations that do not change the range of possible measurements. For 
instance, if we have an interval scale but scale values must be positive (as in the case of priority 
measurement), we admit admissible transformations of the form (p(w) = aw + /3, (Y > 0, only if 
crw+p > 0 for all relevant values 20. If we have an ordinal scale and scale values must be positive, 
we admit all strictly increasing transformations as admissible, so long as they take all relevant 
values w into positive values v(w). As it turns out, this assumption would not be needed for the 
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proofs if we would allow the unctions hi to be defined for nonpositive arguments. However, the 
assertions are not interesting without this requirement since priorities are assumed to be positive. 

4. A PRELIMINARY: THE CASE OF 
CONSTANT DESIRED ARRIVAL TIMES 

Recall the example from Section 3 which shows that the conclusion that schedule C is optimal is 
meaningless if priorities are measured on a ratio scale even if the objective function is summable, 
separable, and symmetric. However, in the case of constant desired arrival times, i.e., where 
d = (d,d,..., d), the conclusion is meaningful under some assumptions, as we have also noted 
in Section 3 and as will be shown in this section. In the scheduling literature, this is called the 
problem of common due dates. Suppose that the objective function is summabie and separable. 
It will be useful to use the terminology that such an objective function is w-increasing if both ht 
and h, are strictly increasing in w, and IC - &increasing if f(C, d) = A(IC - dl) for A, an 
increasing function. Then it can be seen that if the objective function is symmetric, w-increasing 
and IC - d/-increasing, a greedy algorithm gives an optimal solution. Moreover, any strictly 
increasing transformation of scale values from wi to cp(wi) (that is defined in the sense of leaving 
all scale values positive) gives the same greedy solution. Hence, the conclusion of optimality is 
me~ingful for ratio scales, interval scales, and more generally, for ordinal scales. To make this 
precise, consider the following greedy algorithm to compute a schedule. 

GREEDY ALGORITHM. 

(a) Order the items as ir,. . . ,i, so that wil 2 ** - 2 w+_. 

(b) Forj = I,..., n, do assign to ij a timeslot closest to d that is still available. (Note that 
a timeslot remains available until it is assigned to c items.) 

Let us say that C is a (d, n)-greedy solution to the scheduling problem w, d if it can be 
obtained by the above greedy algorithm. For example, if c = 1, d = 3, and n = 8 with 
w1 2 *** 2 wn, three examples of (d,n)-greedy solutions are C = 3,4,2,5,1,6,7,8; D = 
3,4,2,1,5,6,7,8; E = 3,2,4,1,5,6,7,8. Notice that the sequence ICQ - d[, j = 1,. . . , n, takes 

the values O,l, 1,2,2,. . . , d-l,d-l,d,d+l,d+2 ,..., whenc=l. 

Suppose that C is a schedule on n items. For 1 I i, j I n, define a new schedule D = 

switch (C; i, j) by taking 

& = 

i 

Ci, if k = j, 

Cj, if k = i, 

ck, otherwise. 

Similarly, for 1 < i < n, and a any positive integer (representing a timeslot) define a new schedule 
D = move (C; i, a) by taking 

Dk= a’ 
( 

if k = i, 

ck, otherwise. 

Notice that if c is the capacity, then in order for D = move (C; i,a) to be a valid schedule, the 
timeslot a should have been used at most c - 1 times by C. On the other hand, D = switch 
(C; i, j) remains valid whenever C is. In what follows, we will usually assume that the objective 
function is summable, separable, and symmetric. In this case, we use h(w) in place of la,(w) 
and he(w). 

LEMMA 4.1. Let F be a summable, separable, symmetric objective function with f(C, d) = 
A(IC - d[) for some function A. Then, we have 

(a) F(C) - F(D) = h(wd)[A(ICi - dil) - A(ICj - dil)] + h(wj)[A(ICj - djl) - A(ICi - djl)] if 

D = switch (C; i,j); and 
(b) F(C) - F(D) = ~(w~)~A(lC~ - d&l - A(la - da\)] if D = move (C; &a). 
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PROOF. Straightforward. I 

If C and D are schedules, let us say that C E D if D = switch (C; i, j) for i, j such that 
di = dj and wi = wj. Let US say that C N D if C 3 D or there are schedules Cl,. . . , C, so 
that C E Cl, Cl E C2,. . . , C, 3 D. Note that if C N D with respect to problem w, d, then 
C N D with respect to problem cp(w),d for any function cp. 

It is clear that 

(a) N is an equivalence relation, 
(b) C N D implies that C and D use the same set of arrival times, 
(c) if C and D are greedy solutions of the same constant desired arrival time problem then 

CwD,and 
(d) if cp is any transformation of priority scale, then C N D implies that F(C,cp(w),d) = 

F(D, p(w), d) for any summable F. 

Let C be a schedule for any scheduling problem. We say that (i, j) is a reversing pair for C if 
‘uti > wj and ICi - dil > ICj - djl. 

LEMMA 4.2. Let C be a schedule for the constant desired arrival time problem, and suppose F 
is summable, separable, symmetric, w-increasing, and IC - d(-increasing. Then if C is optimal, 
it has no reversing pairs. 

PROOF. This is straightforward from Lemma 4.la since all di are the same. I 

THEOREM 4.3. Suppose that the objective function is summable, separable, symmetric, 
w-increasing, and IC - d/-increasing. Then C is an optimal solution for the constant desired 
arrival time problem if and only if C is a (d, n)-greedy solution. 

PROOF. Suppose C is optimal. Then by Lemma 4.2, C has no reversing pairs. Order the items 
as%l,...,i,sothat 

ICi, - dl 5 ICi, - dl 5 ... L ICi, - dl and wi, 2 .. . > wi,,. 

This is possible since there are no reversing pairs. 
Let D be a (d, n)-greedy solution obtained using this ordering of the items. Then ICi - dj 2 

IQ-d1 fori=l,...,nand 

F (C, w, d) = 2 h(wi)A (ICi - dl) 2 2 h(wi)A (IDi - dJ) = F (D, w, d) , 
i=l i=l 

with equality if and only if ICi - dl = IDi - d( for i = 1,2,. . . , n. Since C is optimal, we have 
equality for all i and so, C is (d, n)-greedy. 

Conversely suppose C is (d, n)-greedy, and D is optimal. Then by the above reasoning, D is 
(d, n)-greedy, and hence, C N D. Therefore, C is also optimal. I 

COROLLARY 4.4. Suppose that the objective function is summable, separable, symmetric, 
w-increasing, and IC - dl-increasing. Then the statement that C is an optimal solution for 
the constant desired arrival time problem is meaningful if priorities are measured on ELI ordinal 
scale. 

PROOF. If v(w) is strictly increasing, then the ordering of the items is preserved in the greedy 
algorithm. Thus, C is (d, n)-greedy for w,d if and only if it is (d, n)-greedy for p(w), d, and 
Theorem 4.3 applies. I 

Of course, in the context of Corollary 4.4, the same conclusion is meaningful for interval scales 
and ratio scales since it is true for ordinal scales. The reader should note that in this proof, as 
in subsequent proofs, we do not explicitly use the convention that we only consider cp’s such that 
p(w) > 0 for all relevant values of w. However, the problem cp(w),d is not defined if this is not 
the case since priorities are supposed to be positive. Moreover, the objective function is also not 
defined since hi is only defined on positive priorities. 
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5. THE (d,d,. . . , d, k) PROBLEM 

A similar meaningfulness problem arises if we have nonconstant d. It turns out that sometimes 

nonconstant d gives rise to meaningful conclusions of optimality under interval scale, even ordinal 

scale priority measurement for a variety of objective functions. We shall devote most of the rest 

of this paper to the analysis of one such d, namely d = (d, d, . . . , d, k), where k # d and there 

are n components. We shall assume without loss of generality that 201 2 . . . 2 ~~-1. Under 

these hypotheses, we call the scheduling problem a (d, k)-problem. A (d, k)-problem is perhaps 

the simplest nonconstant d problem and it serves to illustrate how challenging the mathematical 

issues become. 

In the case of ratio scale priority measurement, if we use the objective function F defined by 

(C,w,d) = gwi,C, -dJ, (5.1) 
i=l 

the conclusion of optimality is meaningful for a (d, k)-problem. This follows from our earlier ob- 

servation that summability, separability, and equation (3.1) imply meaningfulness. However, the 

conclusion of optimality can be meaningless with other objective functions, as we have observed 

in Section 3. Even with the objective function of equation (5.1), our conclusion under ratio scales 

does not follow for interval scales. To see why, consider the following example. 

EXAMPLE 1. c = 1, w = (9,9,9, l), and d = (2,2,2,1). Then it is easy to see that the schedule 

C = (2,1,3,4) is optimal. However, after the admissible transformation p(w) = (~‘(11 + /3 given 

by (Y = l/8, p = 718, we have (YW + P = (2,2,2,1) and F(C, crw + 0, d) = 7, while F(D. crw + 

p, d) = 6 for D = (2,3,4,1). 

We shall show that under certain hypotheses, the conclusion of optimality for a (d, k)-problem 

is meaningful for interval scales and even for ordinal scales. 

For a (d, k)-problem, it is useful to study the class S(z) of all schedules C for which C,, = 2. It 

is clear that if C is optimal for a given scheduling problem and C, = z, then C is optimal among 

schedules in S(z). Thus, it suffices to look for the optimal schedule among those schedules that 

are optimal in S(5) for some 2. 

Fixing z, we call a solution C to a (d, k)-problem z-greedy if C is obtained as follows. Let D 

be a (d, n - l)-greedy solution for the first n - 1 items using the order 201 2 . - a 2 20,+~. Let D, 

be a timeslot closest to d that is still available. (There are at most two choices for &.) If z 

appears in the sequence Di, . . . , I&_-l, then let j < n be any index such that Dj = 5. Otherwise, 

let j = n. Then C is defined by 

{ 

Di, for 1 5 i < j, 

Ci = Di+l, for j 5 i < n, 

X, for i = n. 

REMARK 5.1. Let ID, - dl = j. If c(2d - 1) > n - 1, equivalently if d 1 [(n + c)/2cl, then 

schedule D assigns exactly c items to timeslot d and exactly 2c items to timeslots at each of the 

distances 1,2,. . . , j - 1 from d, and the remaining items to timeslots at distance j from d. If 

c(2d - 1) 5 n - 1, equivalently if d < [(n + c)/2cl, then D assigns c items to each of the timeslots 

1 , . . . , [n/c] and th e remaining items, if any, to the next timeslot. 

All future references to (d, n - 1)-greedy solutions D in this section assume that the solution 

is obtained using the order 2~1 2 . . - 2 w,,_~. 

LEMMA 5.2. For a (d, k)-problem, suppose that F is summable, separable, symmetric, w-increas- 

ing, and (C - dl- increasing. If C is optimd in S(z), then C has no reversing pairs (i, j) with 

i,j <n. 

PROOF. Straightforward. m 
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LEMMA 5.3. Let w, d be a (d, k)-problem, let F be a summable, separable, symmetric, w- 
increasing, and IC - dl-increasing objective function. Then C is optimal for S(x) if and only if 
C N D where D is an x-greedy schedule for this problem. 

PROOF. Similar to the proof of Theorem 4.3 applied to the first n - 1 items. I 

LEMMA 5.4. For a given (d, k)-problem, let F be a summable, separable, symmetric, w-increas- 
ing, and IC - dl-increasing objective f~ctjon. Then the con~tio~ that C is optima for S(x) is 

meaningful if priorities are measured on an ordinal scale. 

PROOF. This follows from Lemma 5.3; the proof is similar to the proof of Corollary 4.4. 1 

Given a (d, k)-problem, let D be a (d, n - 1)“greedy solution and C the corresponding x-greedy 
solution. If i < n and IDi - dl < fCi - dj, we say that i is a pushed item. We define Fir,(x) to 
be the set of all pushed items. For example, suppose c = 1, d = (3,3,3,3,3,4), D = (3,2,4,1,5), 
and x = 4. Then an x-greedy solution C is (3,2,1,5,6,4) and FID(x) = {3,5}. Similarly, if c = 2, 
d = 3, and n = 14, then a (d, n- l)-greedy solution is given by D = (3,3,2,4,2,4,5,1,1,5,6,6,7), 
and with x = 4, FID(x) = {6,10,12}. 

The following Lemma summarizes some properties of FID(X) that we need. 

LEMMA 5.5. Given a (d, k)-problem, let D be a (d, n - l)-greedy ~~ution and C a corr~ponding 
x-greedy solution. Then, 

(a) the set PID(X) is independent of D (we denote this set by PI(x)); 
(b) for timeslots x1,x2 such that 1x2 - d/ _< 1x1 - dj, we have PI(q) C PI(Q); 

(c> IWW + 111 - lPW)l)l I 1; 
(d) if d 1 [(n + c)/2cl, th en PI(s) = 0 if and only if 1x - dl 2 [(n - c)/2c]. If d < 

[(n + c)/2c7, then PI(x) = 0 if and only if x 2 [n/cl. 

PROOF. Recall that D, is a closest timeslot from d that is available after the first n - 1 items 
are assigned by a (d,n - l)-greedy schedule D and the timeslots used by schedule D are as 
described in Remark 5.1. Observe that for any i such that Ix - $1 5 i < 10, - dl, the item with 
largest index among the items at distance i from d is pushed; no other items are pushed. Since 
all the (d,n - l)-greedy solutions use the same order, (a) foliows. The rest of the proof is also 
straightforward from these observations. I 

Given a (d, k)-problem, let w* = (WI , . . . , w,+_l) and d” be the (n - l)-tuple of d’s. Suppose F 

is a summable, separable, symmetric, w-increasing, and IC - dl-* increasing objective function. 
If D is a (d,n - l)-greedy solution and C is the corresponding x-greedy solution, then 

F(C,w,d) = F(D,w*,d*) 

+ jcz., Nwi) 1-4 W’i - 4) - A Wi - 4 - III+ Mum)A (1% - 4) 

= L(w, d, n) + Mfw, d, k, n)(x), 

(5.2) 

where L(w, d, n) = F(D, w*, d*) and 

~(w,d,k,~)(x) = x I [A(lC+ - df) - A(/C,: - dj - I)] -I- h(w,JA(lx - ki). (5.3) 
iEPI(Z) 

LEMMA 5.6. Suppose that the objective function is summable, separable, symmetric, w-increas- 
ing, and /C - dl-increasing. Then C is optimal for the (d, k)-probfem w, d if and only if C is 
optimal for S(C,J and x = C, minimizes M(w, d, k, n)(x). 

PROOF. Certainly if C is optimal, then it is optimal for S(C,,). So we may assume that C is 
optimal for S(C,& By Lemma 5.3, C N E where E is x-greedy for x = C,. Then 

F(C,w,d) = F(E, w,d) = L (w,d, n) + M (w,d, k,n) (x). 
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But for fixed d, ra, w, we have that ~(w,d,~) is independent of x for any x-greedy solution. 
Thus, F(C, w, d) is minimized if and only if M(w, d, k, n)(x) is minimized. I 

To state the next theorem, let us say that a (d, k)-problem is amenable if PI(k) = 0. Necessary 
and sufficient conditions for amenability are obtained by putting x = k in Lemma 5.5(d). 

THEOREM 5.7. Suppose that the objective function is summable, separable, symmetric, w- 
increasing, and IC - d/-increasing. If a (d, k)-problem is amenable, then the conclusion that C is 
optimal for a (d, k)-problem w, d is meaningfd if prjorjties are measured on an ordinal scale. 

PROOF. Let cp be strictly increasing. Since A is increasing and h > 0, 

M (V(W), d, k, n) (x) r: h (cp(wn)) A (lx - kl) 2 h (qP(wn)) A(O), 

with both inequalities being equalities if and only if Pf(x) = 0 and x = k. But PI(k) = 0 because 
a (d, k)-problem is amenable, so x = k does achieve both equalities, and no other x achieves the 
second equality. Thus, by Lemma 5.6, C is optimal for v(w), d if and only if C, = k, and C is 
optimal for S(k). I 

If a (d, k)-problem is not amenable, then we cannot in general conclude meaningfuiness under 
an ordinal scale, even under an interval scale. (See Example 1.) We now turn to situations where 
we can conclude meaningfulness for ordinal scales even if a (d, k)-problem is not amenable. 

LEMMA 5.8. Consider a (d, k)-problem w, d with either 

(i) k > d or 

(ii) k < d and d 2 [(n + c)/2cl. 

Suppose that the objective function is summabfe, separable, symmetric, w-increasing, and IC-dl- 

increasing. Suppose C is an optimal solution and let x = C,. Then if k > d, we have x 2 k and 

ifk<d, wehavelIx<k. 

PROOF. Assume first that k > d, but x < k. Let j = Ik - xl - 1. If there is an item i < n such 
that Ci = k + j, then let D = switch (C, i, n); otherwise, let D = move (C; n, k + j). Then 
IC, - kl = ID, - kl+ 1 and Ci = Di or ICi -dl > lDi -dl. Hence, by Lemma 4.1, F(C) > F(D), 
a contradiction. 

Now suppose that k < d, but x > k. Let j = Jk - XI - 1. By the condition on d and by 
Remark 5.1, timeslot 1 or 2d - 1 is available after the first n - 1 items are scheduled. Clearly, 
C is equivalent in terms of penalty to a schedule C’ for which timeslot 1 is available. Let 
j’ = max( 1, k - j). If th ere is an item i < n such that C, = k - j, then let D = switch (C; i,n); 
otherwise, let D = move (C’; n,j’). As in the first part of the proof, it is straightforward to 
verify, using Lemma 4.1, that F(C) > F(D), a contradiction. I 

THEOREM 5.9. Consider a (d, k~-problem w, d with ejther 

(i) k > d or 

(ii) k < d and d > [(n f c)/2cl. 

Suppose that the objective functjon is summable, separable, s~metric, and w-jncr~j~, and 
f(C, d) = KIC - dl + L for K > 0. Then the statement that C is optimal for this problem is 
meaningful if priorities are measured on an ordinal scale. 

PROOF. Note that we may assume that K = 1 and L = 0. To see why, observe that for any 
strictly increasing cp, 

FCC> CpW, 4 = 2 h b(w)) [KIG - &I-+ L] 

and so C mini~zes F(C, (P(W), d) if and only if C minimizes C%, h(~~w~))~C~ - di\. 
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By Lemma 5.6, if cp is strictly increasing, C is optimal for v(w), d if and only if C is optimal 

for S(C&), and 2 = C,, minimizes M(cp(w), d, k, n)(z). Thus, it suffices to show that IC minimizes 

M(cp(w),d, k, )( ) g dl n x re ar ess of the choice of strictly increasing cp. Since K = 1 and L = 0, 

the function A in the definition of M in equation (5.3) is the identity. Hence, z minimizes 

M(cp(w), d, k, n)(x) if and only if z minimizes 

h (V(G)) Ix - kl + c h (cp(Wi)) = H (P(W), n) (x). (5.4) 
GP1(2) 

Note that by the convention stated at the end of Section 3, we only consider ‘p such that cp(w) > 0 

for all w that arise. 

CASE 1. k > d. By Lemma 5.8, we can assume that x > k. Let y = x + 1. Then by Lemma 5.5, 

PI(z) = PI(y) or there exists j(x) such that PI(z) = PI(y) U {j(x)}. Let q(z) be wjcZ) if 

PI(z) # PI(y) and any number less than w, otherwise. By equation (5.4) 

h b&4> - h (‘P(w.&, 
H (P(W), n> (Y> - H (cp(wh n) (x> = { h (cp(w,)) 

if PW # WY)~ 

if PI(s) = PI(y). 
(5.5) 

, 

Thus, timeslot z is a better choice for C, than 2 + 1 is (i.e., H(cp(w),n)(y) > H(cp(w),n)(x)) 

if and only if 20~ > q(x) ( since h o cp is strictly increasing). Note that for x sufficiently large, 

PI(x) = PI(y) and so q(x) < wn. Hence, H(cp(w),n)( x is minimized for the smallest x 2 k for ) 
which ‘wn > q(x) and for all x 2 k with w, = q(x). Clearly, such 2 are independent of cp. 

CASE 2. k < d. Again by Lemma 5.8, we can assume that 1 < x I k. Note that equation (5.5) 

still holds for 1 < x <_ k and y = z - 1 with j(x) as in Case 1. Let q(x) be as in Case 1, with q(1) 

any number less than WJ,, by convention. We find that H(cp( w n x is minimized for the largest ), )( ) 

2 5 k for which w, > q(x) and for all z < k with w, = q(x). Clearly, such z are independent 

of $7. I 

REMARK 5.10. If k c d and d < [(TI + c)/2cl, th e conclusion of Theorem 5.9 does not necessarily 

follow. This follows from Example 1. 

REMARK 5.11. The assumption in Theorem 5.9 that f is linear, i.e., f(C,d) = KIC - dl + L, 

cannot be replaced by an assumption that f is quadratic. Consider the summable, separable, 

symmetric objective function F with h(w) = w and f(C, d) = IC - d12. Let c = 1, d = (l,l, 2), 

w = (5,1,4). Then for C = (1,3,2), F(C, w, d) = 4 and it can be shown that F(E, w, d) > 4 

for any other schedule E. However, for q(w) = w + 1 = (6,2,5), F(C,cp(w), d) = 8, while 

F(D, cp(w), d) = 7 for D = (1,2,3). 

REMARK 5.12. We note that Theorems 5.7 and 5.9 do not generalize to the case where d = 

(d, d, . . . ,4 k k), even for interval scales. Consider the objective function F defined in equa- 

tion (5.1), let c = 1, d = (3,3,3,4,4), w = (lO,lO, 3,1,1). Then it is straightforward to show 

that C = (3,2,4,5,6) is an optimal solution. However, if q(w) = w + 2 = (12,12,5,3,3), then 

F(C,cp(w),d) = 26, while F(D,cp(w),d) = 25 for D = (3,2,1,4,5). 

Recall that for summable, separable objective functions, equation (3.1) leads to meaningfulness 

of the conclusion of optimality in the case of ratio scale priority measurement. It turns out that 

an equation like it can also be used as an assumption that leads to meaningfulness in the case of 

ordinal scale priority measurement. Let us say that a summable, separable objective function F 
is i-semilinear for i = t or e if for every (Y > 0 and 0, if w > 0 and CYW + /3 > 0, then 

h&w + 0) = Ki(ar @hi(w) + Li(% P), Ki(a,B) > 0. (5.6) 

We say that F is pair semilinear if it is i-semilinear for i = t, e, and Ki is the same function for 

i = t, e, and Li is the same function for i = t, e. (As in the case of equation (3.1), equation (5.6) 

arises in measurement theory. See [3,21,26-281 for details.) We shall need the following result. 
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THEOREM 5.13. (See 1.271.) Suppose that hi : W+ + W+ is a given function for i = t, e and with 
it F is i-semilinear. Then hi(w) = aiw + bi, where ai 2 0, bi 2 0 and either ai > 0 or bi > 0. 
If F is pair semilinear, then ht = h,. 

By Theorem 5.13, under pair semilinearity, &(w) = he(w) = Aw+B. In the case where A > 0, 
the objective function is symmetric and w-increasing. Thus, these hypotheses of Theorem 5.9 

do not need to be assumed. In the case where A = 0, ht and h, are constants, and so for all C 

and all transformations cp, F(C, w,d) = F(C,cp(w),d). In this case, optimality of C is clearly 

preserved under any transformation cp. Thus, we have the following corollary of Theorem 5.9. 

THEOREM 5.14. Consider a (d, k)-problem w, d with either 

(i) k > d or 
(ii) k < d and d 2 [(n + c)/2c]. 

Suppose that the objective function is summable, separable, and pair semilinear, and f(C, d) = 
KIC - dl + L for K > 0. Then the statement that C is optimal for this problem is meaningful if 
priorities are measured on an ordinal scale. 

REMARK 5.15. It is interesting to note that in Theorem 5.14, the hypothesis of pair semilinearity 

cannot be replaced by assuming t-semilinearity and e-semilinearity. Suppose that c = 1, d = 

(2,2,3), w = (l,l, l), ht(w) = 3 + w, h,(w) = 3w, K = 1, L = 0. The schedule C = (2,1,3) 

is optimal since its penalty is 3 and any schedule has penalty at least 3. However, consider 

q(w) = 7w. Then C has penalty 21 while D = (2,4,3) has penalty 20. The conclusion of the 

theorem is false, even for ratio scales. 

6. THE (1, 1, . . . , 1, k) PROBLEM 

For the special case d = 1, we shall observe in this section that we can obtain stronger results 
than Theorems 5.9 and 5.14. In particular, there is no need to worry about the case k < d, 
since we must have k > d. Also, as we shall observe, symmetry need not be assumed, and in 

fact, he(w) can be an arbitrary (positive) function. However, we shall have to be a little stricter 

about f(C, d). We shall use the terminology (1, k)-problem for a (d, k)-problem with d = 1. 

THEOREM 6.1. Consider a (1, k)-problem w, d and suppose that the objective function is sum- 
mable and separable, ht(w) is strictly increasing in w, and f(C,d) = KIC - dl for K > 0. Then 
the statement that C is optimal for this problem is meaningful if priorities are measured on an 
ordinal scale. 

PROOF. Given the objective function F, define a new summable, separable objective function F’ 
by letting f’ = f, hi = h: = ht. Then F’ is symmetric. Moreover, k > d since k # d in a 
(d, k)-problem, and so the hypotheses of Theorem 5.9 are satisfied. We shall show that C is 
optimal for F if and only if C is optimal for F’. The meaningfulness of the conclusion that C is 
optimal for F, then follows from the meaningfulness of the conclusion that C is optimal for F’, 
which holds by Theorem 5.9. 

Let C be optimal for the (1, k)-problem w, d under F. We shall show that C, 2 d, for all i. 
Of course, this is trivial for i < n. Suppose that C,, < d, = k. If there is an r < n such that 
C, = C, + 1, then let D = switch (C; r, n); otherwise let D = move (C; n, C, + 1). Then 

F(C,w,d) - F(D,w,d) = 
UwnF, ifnoC,isC,+l, 

h,(w,,)K + ht(wr)K, otherwise, 

which is positive since ht > 0, h, > 0, and K > 0, contradicting the optimality of C. Hence, 

we conclude that Ci 2 di for all i. It follows that F’(C, w,d) = F(C, w,d). Let D be optimal 
for F’. Then by Lemma 5.8, since k > d, we have D, 2 k. Thus Di 2 di for all i, and 
hence, F’(D, w, d) = F(D, w, d). It follows that C is optimal for F if and only if C is optimal 
for F’. I 
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REMARK 6.2. A similar proof shows that the same conclusion holds if we let f(C,d) = KIC - 

dl + L, K > 0, and add the hypothesis that g(w, k, k) < g(w, k - 1, k) for all w, or the more 

general hypothesis that g(w,C,d) < g(w, D,d) if IC - dl < ID - dl. This gives us 

he(wn)f(k - 1, k) - Mwn)f(k k) > 0, 

REMARK 6.3. The reader should note that the assumption that arrival times must be positive 

plays a central role in Theorem 6.1. To illustrate this point, modify the example in Remark 5.15 

by shifting desired and scheduled arrival times by 1, i.e., taking d = (1, 1,2), C = (1, 0,2), and 

D = (1,3,2), while leaving priorities w = (1, 1,l) unchanged. As before, C is optimal but after 

change of scale v(w) = 7w, D has a smaller penalty than C. 

The next result follows from Theorem 6.1 in the same way that Theorem 5.14 follows from 

Theorem 5.9. We use the observation in Theorem 5.13 that t-semilinearity implies &(w) = 

Aw+B,AzO. 

THEOREM 6.4. Consider a (1, k)-problem w, d and suppose that the objective function is sum- 
mable, separable, and t-semilinear, and f (C, d) = KIC - dl for K > 0. Then the statement 

that C is optimal for this problem is meaningful if priorities are measured on an ordinal scale. 

7. OPEN QUESTIONS AND FURTHER 
DIRECTIONS FOR ANALYSIS 

In this paper, we have left a number of specific questions for further investigation. Problems 

with d = (d, d, . . . , d, k, k) and d = (d, d, . . . , d, ICI,. . . , k,) are natural generalizations of the 

(d, k)-problem. Even a (d, k)-problem when k < d and d < [(TZ + c)/2c] remains to be analyzed. 

As mentioned in Section 2, we assumed that c is constant for simplicity. However, our results 

easily generalize to the case of nonconstant c : N --+ N (different aircraft with different numbers 

of seats might operate on different days; the number of processors available for processing the 

task might be different due to maintenance schedules). For example, the condition on d in (ii) of 

Theorem 5.9 becomes 
2d- 1 

C c(a) 2 n. 

a=1 

Other problems need to be analyzed for nonconstant c. 

Greedy algorithms have played a role in this paper. It should be useful to determine general 

conditions under which a greedy algorithm gives an optimal solution to the kinds of scheduling 

problems considered here. 

We have assumed throughout that there is a constant transportation time. It would be inter- 

esting to analyze problems of the kind we have discussed if transportation times can vary. 

In investigating the constant desired arrival time problem and a (d, k)-problem, we looked for 

situations where the conclusion of optimality was meaningful for interval scales but not ordinal 

scales, but were unable to find any such examples. It would be interesting to study situations 

where we obtain interval scale but not ordinal scale meaningfulness. 

The special cases of scheduling problems w, d investigated in this paper are just some of those 

which would be interesting to investigate further. It would also be of interest to consider other 

assumptions about objective functions. More generally, one would like to systematically analyze 

such questions as the following. Given a scheduling problem and an objective function, for what 

types of scales of priority is the conclusion of optimality meaningful? Given a scheduling problem 

and a scale-type for priority measurement, for what types of objective functions is the conclusion 

of optimality meaningful? Given an objective function and a scale-type for priority measurement, 

for what types of scheduling problems is the conclusion of optimality meaningful? Many of these 

questions should lead to challenging mathematical problems. 
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