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Image credits:
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Spread and Control of Disease

•The spread of COVID-19 is just the latest and most 
devastating example of a newly emerging disease that 
threatens not only lives but our economy and our social 
systems.

Image credit: Wikimedia commons
https://www.youtube.com/watch?v=SBboFVjLQak , 1:10
Chinanews.com/China News Service
Unchanged
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Spread and Control of Disease

•Ebola, Zika are other recent examples

Image credits: Wikimedia commons
Ebola treatment unit: CDC Global; Zika: Beth.herlin no changes made

Ebola Zika
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Mathematical Models of Disease 
Spread

Mathematical models of infectious diseases go 
back to Daniel Bernoulli’s mathematical analysis of 
smallpox in 1760.

Smallpox

Image credit:
https://wellcomeimages.org/indexplus/obf_images/b2/a8/
9ca500938fc44f77d4c4e49a4d90.jpg 

https://wellcomeimages.org/indexplus/obf_images/b2/a8/
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Mathematical models have become important tools 
in analyzing the spread and control of infectious 
diseases, especially when combined with powerful, 
modern computer methods for analyzing and/or 
simulating the models. They have played a 
nontrivial role in the fight against COVID-19.

AIDS

Credit for both: CDC

Bubonic Plague
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Great concern about the deliberate introduction of 
diseases by bioterrorists has led to new challenges 
for mathematical modelers.

anthrax
Credit: CDC
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Spread and Control of Disease
•Modern transportation systems allow for rapid spread of 
diseases. 
•Diseases are spread through social networks.
•“Contact tracing” is an important part of any strategy to 
combat outbreaks of infectious diseases, whether naturally 
occurring or resulting from bioterrorist attacks.
•I will illustrate the ideas with some fairly simple ”toy” 
models that will lead to fascinating graph-theoretical 
problems.
•The emphasis is on the graph theory.
•However, even toy models for spread of disease lead to
interesting insights.
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The Model: Moving From State to 
State

Social Network = Graph
Vertices = People
Edges = contact

Let si(t) give the state of vertex  i
at time  t.

Simplified Model: Two states:
= susceptible,     =  infected (SI Model)

Times are discrete: t = 0, 1, 2, …

t=0
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The Model: Moving From State to 
State

More complex models: SI, SEI, 
SEIR, etc.

S = susceptible, E = exposed, 
I = infected, R = recovered 
(or removed)

measles

SARS
Credit: measles: Wikimedia.org
SARS:  Medical News Today
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Threshold Processes 
Irreversible  k-Threshold Process: You change 
your state from     to      at time  t+1  if at least  k  of 
your neighbors have state     at time  t. You never 
leave state     .
Disease interpretation?  Infected if sufficiently 
many of your neighbors are infected.
Special Case  k = 1:  Infected if any of your 
neighbors is infected.
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Irreversible 2-Threshold Process

t=0
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t=1t=0

Irreversible 2-Threshold Process
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t=1 t=2

Irreversible 2-Threshold Process
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Irreversible 3-Threshold Process

t = 0

a
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b
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Irreversible 3-Threshold Process

t = 0
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Irreversible 3-Threshold Process

t = 1

a

e

d c

b

f

g

a

e

d c

b

f

g

t = 2



17

Complications to Add to Model
•k = 1, but you only get infected with a certain 
probability.
•You are automatically cured after you are in the 
infected state for  d  time periods.
•A public health authority has the ability to
“vaccinate” a certain number of vertices, making 
them immune from infection.

Credit: Wikimedia commons, Ganesh Dhamodkar, 
no changes COVID-19 vaccination queue

https://commons.wikimedia.org/wiki/User:Shivashree
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Vaccination Strategies

Mathematical models are very helpful in 
comparing alternative vaccination strategies. The 
problem is especially interesting if we think of 
protecting against deliberate infection by a 
bioterrorist.

Credit: wikimedia
commons.org
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Vaccination Strategies
If you didn’t know whom a bioterrorist might 
infect, what people would you vaccinate to be sure 
that a disease doesn’t spread very much? 
(Vaccinated vertices stay at state     regardless of 
the state of their neighbors.)

Try odd cycles. Consider an irreversible 2-
threshold process. Suppose your 
adversary has enough supply to 
infect two individuals.

5-cycle C5
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Vaccination Strategies
One strategy: “Mass vaccination”:  Make 
everyone  immune in initial state.
In  5-cycle C5,  mass vaccination means vaccinate 5 
vertices. This obviously works. 
In practice, vaccination is only effective with a 
certain probability, so results could be different.

Vaccine has a cost and availability may be limited.

What is the best way to use a limited supply?
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Vaccination Strategies
What if vaccine is in limited supply? 
Suppose we only have enough vaccine to vaccinate 
2 vertices. 
Suppose terrorist (or natural disease) can infect 2 
vertices.
Two different vaccination strategies:

Vaccination Strategy I Vaccination Strategy II

VV

V

V
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Vaccination Strategy I: Worst 
Case (Adversary Infects Two)
Two Strategies for Adversary

Adversary Strategy Ia Adversary Strategy Ib

VV

I

I

VV

I I

This assumes adversary doesn’t attack a vaccinated vertex. 
Problem is interesting if this could happen – or you encourage 
it to happen.
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The “alternation” between your 
choice of a defensive strategy 
and your adversary’s choice of 
an offensive strategy suggests we 
consider the problem from the
point of view of game theory.

The US Food and Drug 
Administration has studied
the use of game-theoretic
models in the defense 
against bioterrorism.

Credits: upper: Wikimedia commons, lower: CDC
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Vaccination Strategy I
Adversary Strategy Ia

VV

I

I
t = 0
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Vaccination Strategy I
Adversary Strategy Ia

VV

I

I

VV

I

It = 0 t = 1
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Vaccination Strategy I
Adversary Strategy Ia

VV

I

I

VV

I

It = 1 t = 2
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Vaccination Strategy I
Adversary Strategy Ib

VV

I I

t = 0
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Vaccination Strategy I
Adversary Strategy Ib

VV

I I

VV

I I

t = 0 t = 1
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Vaccination Strategy I
Adversary Strategy Ib

VV

I

I

VV

I

It = 1 t = 2



30

Vaccination Strategy II: Worst 
Case (Adversary Infects Two)
Two Strategies for Adversary

Adversary Strategy IIa Adversary Strategy IIb

V

V

V

V

I

I

I

I
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Vaccination Strategy II
Adversary Strategy IIa

V

V

I

I t = 0



32

Vaccination Strategy II
Adversary Strategy IIa

V

V

I

I t = 0

V

V

I

I t = 1
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Vaccination Strategy II
Adversary Strategy IIa

V

V
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Vaccination Strategy II
Adversary Strategy IIb
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Vaccination Strategy II
Adversary Strategy IIb
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Vaccination Strategy II
Adversary Strategy IIb
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Conclusions about Strategies I 
and II

Vaccination Strategy II never leads to more than 
two infected individuals, while Vaccination 
Strategy I sometimes leads to three infected 
individuals (depending upon strategy used by 
adversary). 

Thus, Vaccination Strategy II is                                                   
better, all other things being equal.                                                          

More on vaccination strategies later. Credit: CDC
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The Saturation Problem
Attacker’s Problem: Given a graph, what subsets  
S  of the vertices should we plant a disease with so 
that ultimately the maximum number of people will 
get it?
Economic interpretation: What set of people do we 
place a new product with to guarantee “saturation”
of the product in the population?
Defender’s Problem: Given a graph, what subsets  
S  of the vertices should we vaccinate to guarantee 
that as few people as possible will be infected?
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k-Conversion Sets
Attacker’s Problem: Can we guarantee that 
ultimately everyone is infected? 

Irreversible k-Conversion Set: Subset  S  of the 
vertices that can force an irreversible k-threshold 
process to the situation where every state  si(t) =  

Comment: If we can change back from     to    at 
least after awhile, we can also consider the 
Defender’s Problem: Can we guarantee that 
ultimately no one is infected, i.e., all  si(t) =   ?
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What is an irreversible 2-conversion set for the 
following graph?

x1 x2 x3 x4 x6

x5
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x1, x3 is an irreversible 2-conversion set.

x1 x2 x3 x4 x6

x5

t = 0
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x1, x3 is an irreversible 2-conversion set.

x1 x2 x3 x4 x6

x5

t = 1



43

x1, x3 is an irreversible 2-conversion set.

x1 x2 x3 x4 x6

x5

t = 2
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x1, x3 is an irreversible 2-conversion set.

x1 x2 x3 x4 x6

x5

t = 3
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Irreversible 
k-Conversion Sets in Regular Graphs

G  is  r-regular if every vertex has degree  r.
Set of vertices is independent if there are no edges.

Theorem (Dreyer): Let  G = (V,E)  be a connected  
r-regular graph and  D  be a set of vertices. Then D  
is an irreversible r-conversion set iff V-D  is an 
independent set.

Note: same r
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k-Conversion Sets in Regular Graphs

Corollary (Dreyer):
The size of the smallest irreversible 2- conversion 
set in  Cn is  ceiling[n/2].
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k-Conversion Sets in Regular Graphs

Corollary (Dreyer):
The size of the smallest irreversible 2- conversion 
set in  Cn is  ceiling[n/2].

C5 is 2-regular. The smallest irreversible 2-
conversion set has three vertices: the red ones.
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k-Conversion Sets in Regular Graphs

Another Example: 

a

e

d c

b

f
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k-Conversion Sets in Regular Graphs
Another Example: 
This is 3-regular.
Let k = 3. 
The largest independent set has 2 vertices.

a

e

d c

b

f
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k-Conversion Sets in Regular Graphs
•The largest independent set has 2 vertices. 
•Thus, the smallest irreversible 3-conversion set 
has 6-2 = 4 vertices.
•The 4 red vertices form such a set.
•Each other vertex has three
red neighbors.

a

e

d c

b

f
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Irreversible k-Conversion Sets in 
Graphs of Maximum Degree r

Theorem (Dreyer): Let  G = (V,E)  be a connected 
graph with maximum degree r  and  S be the set of 
all vertices of degree < r.  If  D is a set of vertices, 
then D  is an irreversible  r-conversion set iff SÕD 
and V-D  is an independent set.
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How Hard is it to Find out if There is 
an Irreversible k-Conversion Set of 

Size at Most p?

Problem IRREVERSIBLE k-CONVERSION 
SET: Given a positive integer  p  and a graph  G,  
does  G  have an irreversible  k-conversion set of 
size at most  p?

How hard is this problem?
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Difficulty of Finding Irreversible 
Conversion Sets

Problem IRREVERSIBLE k-CONVERSION 
SET: Given a positive integer  p  and a graph  G,  
does  G  have an irreversible  k-conversion set of 
size at most  p?

Theorem (Dreyer): IRREVERSIBLE k-
CONVERSION SET is NP-complete for fixed  k >
2. 

(Whether or not it is NP-complete for  k = 2  
remains open.)
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Irreversible k-Conversion Sets in 
Special Graphs

Studied for many special graphs. 

Credit: Wikimedia commons, Claudio Rocchini, no changes
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Irreversible k-Conversion Sets in 
Trees
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Irreversible k-Conversion Sets in Trees
The simplest case is when every internal vertex of 
the tree has degree > k.
Leaf = vertex of degree 1; internal vertex = not a 
leaf.

What is an irreversible 2-conversion set here? 
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Irreversible k-Conversion Sets in Trees
The simplest case is when every internal vertex of 
the tree has degree > k.
Leaf = vertex of degree 1; internal vertex = not a 
leaf.

What is an irreversible 2-conversion set here? 

Do we know any vertices
that have to be in such a set?
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All leaves have to be in it.
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All leaves have to be in it.

This will suffice.

t = 0
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All leaves have to be in it.

This will suffice.

t = 0 t = 1
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All leaves have to be in it.

This will suffice.

t = 1 t = 2
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All leaves have to be in it.

This will suffice.

t = 2 t = 3
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Irreversible k-Conversion Sets in 
Trees

So k = 2 is easy. What about k > 2? Also easy.

Proposition (Dreyer): Let  T  be a tree and every 
internal vertex have degree > k, where k > 1. Then 
the smallest irreversible k-conversion set has size 
equal to the number of leaves of the tree.
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Irreversible k-Conversion Sets in 
Trees

What if not every internal vertex has degree > k?

If there is an internal vertex of degree < k, it will have 
to be in any irreversible k-conversion set and will 
never change sign. 

So, to every neighbor, this vertex v acts like a leaf, and 
we can break T into deg(v) subtrees with v a leaf in 
each.

If every internal vertex has degree ! k, one can obtain 
analogous results to those for the > k case by looking 
at maximal connected subsets of vertices of degree k. 
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Irreversible k-Conversion Sets in 
Trees

Dreyer presents an O(n) algorithm for finding the 
size of the smallest irreversible k-conversion set in 
a tree of n vertices.
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Irreversible k-Conversion Sets in 
Special Graphs

Studied for many special graphs. 

Let  G(m,n)  be the rectangular grid graph with  m  
rows and  n  columns. 

G(3,4)
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Toroidal Grids
The toroidal grid T(m,n)  is obtained from the 
rectangular grid  G(m,n)  by adding edges from the 
first vertex in each row to the last and from the first 
vertex in each column to the last.

Toroidal grids are easier to deal with than 
rectangular grids because they form regular graphs:  
Every vertex has degree 4. Thus, we can make use 
of the results about regular graphs.
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T(3,4)
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Irreversible4-Conversion Sets in 
Toroidal Grids

Theorem (Dreyer): In a toroidal grid  T(m,n),
the size of the smallest irreversible 4-conversion 
set is

max{n(ceiling[m/2]), m(ceiling[n/2])} m or n odd

mn/2 m, n even{
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Part of the Proof:  Recall that  D  is an irreversible 
4-conversion set in a 4-regular graph iff V-D  is 
independent. 

V-D  independent means that every edge  {u,v} in  
G  has  u  or  v  in  D. In particular, the ith row 
must contain at least ceiling[n/2] vertices in D and 
the ith column at least ceiling[m/2] vertices in D 
(alternating starting with the end vertex of the row 
or column). 

We must cover all rows and all columns, and so 
need at least max{n(ceiling[m/2]), m(ceiling[n/2])}  
vertices in an irreversible 4-conversion set.
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Irreversible k-Conversion Sets for 
Rectangular Grids

Let Ck(G) be the size of the smallest irreversible
k-conversion set in graph G.

Theorem (Dreyer):
C4[G(m,n)] = 2m + 2n - 4 + floor[(m-2)(n-2)/2]

Theorem (Flocchini, Lodi, Luccio, Pagli, and 
Santoro):

C2[G(m,n)] = ceiling([m+n]/2)
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Irreversible 3-Conversion Sets for 
Rectangular Grids

For 3-conversion sets, the best we have are bounds:

Theorem (Flocchini, Lodi, Luccio, Pagli, and 
Santoro):

[(m-1)(n-1)+1]/3 £ C3[G(m,n)] £
[(m-1)(n-1)+1]/3 +[3m+2n-3]/4 + 5

Finding the exact value is an open problem.
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Vaccination Strategies
Stephen Hartke and others worked on a different problem:
Defender: can vaccinate v people per time period. 
Attacker: can only infect people at the beginning.  
Irreversible k-threshold model.
What vaccination strategy minimizes number of people 
infected? 
Sometimes called the firefighter problem:
alternate fire spread and firefighter placement.
Usual assumption: k = 1. (We will assume this.)
Variation: The vaccinator and infector alternate turns, having 
v vaccinations per period and i doses of pathogen per period. 
What is a good strategy for the vaccinator?

Problem goes back to Bert Hartnell 1995.
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A Survey of Some Results on 
the Firefighter Problem

Thanks to
Kah Loon Ng

DIMACS
For the animated slides,
slightly modified by me
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A Simple Model (k = 1) (v = 3) 
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A Simple Model
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A Simple Model
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A Simple Model
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A Simple Model
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A Simple Model
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A Simple Model
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A Simple Model
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Some questions that can be asked (but 
not necessarily answered!)

• Can the fire be contained?
• How many time steps are required before fire is 

contained?
• How many firefighters per time step are necessary?
• What fraction of all vertices will be saved (burnt)?
• Does where the fire breaks out matter?
• Fire starting at more than 1 vertex?
• Consider different graphs. Construction of 

(connected) graphs to minimize damage.
• Complexity/Algorithmic issues
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Containing Fires in Infinite Grids Ld

Fire starts at only one vertex:
d =1: Trivial.
d = 2: Impossible to contain the fire with 1 

firefighter per time step
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Containing Fires in Infinite Grids Ld
d = 2: Two firefighters per time step needed to contain the 

fire.

8 time steps

18 burnt 
vertices
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Containing Fires in Infinite Grids Ld
d = 2: Two firefighters per time step needed to contain the 

fire.

8 time steps

18 burnt 
vertices

Develin & 
Hartke: Cannot 
do better than 18

Wang & Moeller: 
Cannot contain 
fire in < 8 steps
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……

Containing Fires in Infinite Grids Ld
d ³ 3: Wang and Moeller: If G is an r-regular graph, r –
1 firefighters per time step is always sufficient to 
contain any fire outbreak (at a single vertex) in G. (r-
regular: every vertex has r neighbors.)

.….
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Containing Fires in Infinite Grids Ld

d ³ 3:  In Ld, every vertex has degree 2d. 

Thus: 2d-1 firefighters per time step are sufficient to 
contain any outbreak starting at a single vertex.

Theorem (Develin and Hartke): If d ³ 3, 2d – 2 
firefighters per time step are not enough to contain an 
outbreak in Ld.

Thus, 2d – 1 firefighters per time step is the minimum 
number required to contain an outbreak in Ld and 
containment can be attained in 2 time steps.
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Containing Fires in Infinite Grids Ld

Fire can start at more than one vertex.

d = 2: Fogarty: Two firefighters per time step are 
sufficient to contain any outbreak at a finite number 
of vertices.
d ³ 3:  Hartke: For any d ³ 3 and any positive 
integer f, f firefighters per time step is not sufficient 
to contain all finite outbreaks in Ld.  In other words, 
for d ³ 3 and any positive integer  f,  there is an 
outbreak such that f firefighters per time step cannot 
contain the outbreak.
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Containing Fires in Infinite Grids Ld

The case of a different number of 
firefighters per time step.

Let f(t) = number firefighters available at time t.
Assume f(t) is periodic with period  pf.

Possible motivations for periodicity: 
•Firefighters arrive in batches.
•Firefighters need to stay at a vertex for several 
time periods before redeployment.
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Containing Fires in Infinite Grids Ld
The case of a different number of 

firefighters per time step.
Nf = f(1) + f(2) + … + f(pf)

Rf = Nf/pf

(average number firefighters available per time 
period)

Theorem (Ng and Raff): If  d =2  and  f  is periodic 
with period pf ! 1 and Rf > 1.5, then an outbreak at 
any number of vertices can be contained at a finite 
number of vertices.
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Containing Fires in Infinite Grids Ld
The case of a different number of 

firefighters per time step.
Conjecture (Develin and Hartke): Suppose that 
f(t)/td-2 goes to 0 as t gets large. Then there is some 
fire on Ld that cannot be contained by deploying f(t) 
firefighters at time t.
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Containing Fires in Infinite Grids

Other work has been done on infinite 
triangular grids and infinite hexagonal grids
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Saving Vertices in Finite Grids G

Assumptions:
1. 1 firefighter is deployed per time step
2. Fire starts at one vertex

Let 
MVS(G, v) = maximum number of vertices 

that can be saved in G if fire starts at v.
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Saving Vertices in Finite Grids G
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Saving Vertices in Finite Grids G
nn PPG ´= },|),{()( nbabaGV ££= 1
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Saving Vertices in nml PPP ´´
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Saving Vertices in Pn x Pn x Pn

Conjecture (Moeller and Wang):

limn−>∞ MVS(PnxPnxPn,v)/n3 = 0 for all v
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Algorithmic and Complexity Matters

FIREFIGHTER:
Instance: A rooted graph  (G,v)  and an integer  
p ! 1.

Question: Is MVS(G,v) ! p? That is, is there a finite 
sequence   d1, d2, …, dt of vertices of   G such that if 
the fire breaks out at  v, then,

1. vertex  di is neither burning nor defended at time i

2. at time t, no undefended vertex is next to a burning 
vertex

3. at least p vertices are saved at the end of time t.
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Algorithmic and Complexity Matters

Theorem (MacGillivray and Wang):
FIREFIGHTER is NP-complete.

Theorem (Finbow, Kind, MacGillivray, Wang): 
FIREFIGHTER is NP-complete even if 
restricted to trees with maximum degree 3. 

Theorem (Finbow, Kind, MacGillivray, Wang): 
The problem is solvable in polynomial time for 
graphs of maximum degree 3 if the fire starts at 
a vertex of degree 2. 
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Algorithmic and Complexity Matters

Theorem (King and MacGivillray):
FIREFIGHTER is NP-complete for cubic 
graphs.
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Algorithmic and Complexity Matters

The picture can't be displayed.

Firefighting on Trees:
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Algorithmic and Complexity Matters

Greedy algorithm:

For each  v  in  V(T), define

weight (v) = number descendants of v + 1

Algorithm: At each time step, place 
firefighter at vertex that has not been saved 
such that weight (v) is maximized.
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Algorithmic and Complexity Matters

The picture can't be displayed.

Firefighting on Trees:

78912 11

324161512 6

12 1131111 3 1
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22
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Algorithmic and Complexity Matters

Greedy Optimal

= 7 = 9
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Algorithmic and Complexity Matters

Theorem (Hartnell and Li): For any tree with 
one fire starting at the root and one firefighter 
to be deployed per time step, the greedy 
algorithm always saves more than ½ of the 
vertices that any algorithm saves.
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Algorithmic and Complexity Matters

Theorem (Finbow and MacGillivray): The 
FireFighter problem is solvable in polynomial 
time for caterpillars and for trees of maximum 
degree 3 where the root has degree 2. (This 
includes binary trees.)
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More Realistic Models
Many oversimplifications in both of our models. 
For instance:

•What if you stay infected (burning)
only a certain number of days?
•What if you are not necessarily 
infective for the first few days you
are sick? 

•What if your threshold k for changes from     to   
(uninfected to infected) changes depending upon 
how long you have been uninfected?

Chicken pox
Credit: Wikimedia commons,  
Øyvind Holmstad
no changes

https://commons.wikimedia.org/wiki/User:%C3%98yvind_Holmstad
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More Realistic Models
Consider an irreversible process in which you stay 
in the infected state (state   ) for  d  time periods 
after entering it and then go back to the uninfected 
state (state   ). 
Consider an irreversible  k-threshold process in 
which we vaccinate a person in state    once k-1 
neighbors are infected (in state   ).
Etc. – experiment with a 
variety of assumptions

Credit: PowerPoint stock image
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More Realistic Models
Our models are deterministic. How do probabilities 
enter? 

•What if you only get infected with 
a certain probability if you meet an 
infected person?

•What if vaccines only work with a certain 
probability?

•What if the amount of time you remain infective 
exhibits a probability distribution?

Credit: Wikimedia commons, 
D Wells no changes

https://commons.wikimedia.org/wiki/User:D_Wells
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What about Quarantine?

Can you use graph-
theoretical models to 
analyze the effect of 
different quarantine 
strategies?

Credit: Wikimedia commons, 
Tisnec no changes

https://commons.wikimedia.org/w/index.php?title=User:Tisnec&action=edit&redlink=1
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There is much more analysis of a similar nature that 
can be done with graph-theoretical models. 


