
Experimental Analysis of Sequential Decision Making
Algorithms for Port of Entry Inspection Procedures

Saket Anand, David Madigan, Richard Mammone, Saumitr Pathak, Fred Roberts1

Rutgers University, Piscataway, NJ 08854

Acknowledgement. Supported by ONR grant number N00014-05-1-0237 and NSF
grant number NSFSES 05-18543 to Rutgers University. The authors thank Kevin
Saeger and Phillip Stroud for providing values of parameters and code to assist us in
the analysis in this paper.

Abstract. Following work of Stroud and Saeger, we investigate the formulation
of the port of entry inspection algorithm problem as a problem of finding an op-
timal binary decision tree for an appropriate Boolean decision function. We re-
port on an experimental analysis of the robustness of the conclusions of the
Stroud-Saeger analysis and show that the optimal inspection strategy is re-
markably insensitive to variations in the parameters needed to apply the Stroud-
Saeger method.

1. Introduction

As a stream of containers arrives at a port, a decision maker has to decide how to in-
spect them, which to subject to further inspection, which to allow to pass through with
only minimal levels of inspection, etc. We look at this as a complex sequential deci-
sion making problem. Stroud and Saeger [8] have formulated this problem, in an im-
portant special case, as a problem of finding an optimal binary decision tree for an
appropriate binary decision function. In this paper, we report on experimental analysis
of the Stroud-Saeger method that has led us to the conclusion that the optimal inspec-
tion strategy is remarkably insensitive to variations in the parameters needed to apply
the method.

2. Sequential Diagnosis

Sequential decision problems arise in many areas, including communication networks
(testing connectivity, paging cellular customers, sequencing tasks, etc.), manufactur-
ing (testing machines, fault diagnosis, routing customer service calls, etc.), artificial
intelligence and computer science (optimal derivation strategies in knowledge bases,
best-value satisfying search, coding decision tables, etc.), and medicine (diagnosing

1 Communicating author. Contact for further information at froberts@dimacs.rutgers.edu.

patients, sequencing treatments, etc.). A selected list of references for such applica-
tions includes [4, 6, 7].

Sequential diagnosis is an old subject, but one that has become increasingly impor-
tant with the need for new models and algorithms as the traditional methods for mak-
ing decisions sequentially do not scale.

3. Problem Formulation

The problem we investigate is to find algorithms for sequential diagnosis that mini-
mize the total "cost" of the inspection procedure, including the cost of false positives
and false negatives. To make the problem precise, we imagine a stream of containers
arriving at the port with the goal of classifying each of them into one of several cate-
gories. In the simplest case, these are "ok" (0) or "suspicious" (1). There are several
possible tests that can be performed and an inspection scheme specifies which test to
perform next based on outcomes of previous tests. We can think of the containers as
having certain attributes, such as levels of certain kinds of chemical or biological ma-
terials, whether or not certain types of cargo are present in the cargo list, and whether
cargo was picked up in a certain port. At present, inspectors use attributes such as:
Does the container's ship’s manifest set off an “alarm”? Is the neutron or Gamma
emission count above threshold? Does a radiograph image come up positive? Does an
induced fission test come up positive? We can imagine many other attributes. Our
study is concerned with general algorithmic approaches. We seek a methodology that
is not necessarily tied to today’s technology. Detectors are evolving quickly and so
this approach makes sense to us.

3.1. Boolean Decision Functions and Corresponding Binary Decision Trees

In the simplest case, the attributes can be described as being in one of two states, ei-
ther 0 ("absent") or 1 ("present"), and we can think of a container as corresponding to
a binary string such as 011001. Classification then corresponds to a binary decision
function F that assigns each binary string to a category. For instance, F(011001) = 1
means that we say that a package is suspicious if it has the second, third, and sixth at-
tributes. If the category must be 0 or 1, F is a Boolean decision function (BDF). An
inspection scheme tells us in which order to calculate the binary string so as to be able
to compute the Boolean function F. Stroud and Saeger look at this as the problem of
finding an optimal binary decision tree (BDT) for calculating F. In the BDT, the
nodes are sensors or categories (0 or 1). Two arcs exit from each sensor node, labeled
left and right. Take the right arc when the sensor says the attribute is present, the left
arc otherwise. For instance, in Figure 1, we reach category 1 from the root only
through the path a0 to a1 to 1. A container is classified in category 1 iff it has both at-
tributes a0 and a1. The corresponding Boolean function is given by F(11) = 1, F(10) =
F(01) = F(00) = 0. In Figure 2, we reach category 1 from the root by a0 left to a1, then
right to a2, then right to 1, or a0 right to a2 right to 1. A container is classified in cate-
gory 1 iff it has a1 and a2 and not a0 or a0 and a2 and possibly a1. The corresponding
Boolean function is given by F(111) = F(101) = F(011) = 1, F(abc) = 0 otherwise.

Figure 3 gives a BDT corresponding to the same Boolean function. However, it has
one less observation node ai. So, it is more efficient if we simply count number of ob-
servation nodes.

Even if the Boolean function F is fixed, the problem of finding the “optimal” BDT
for it is very hard (NP-complete) [5]. One can try to solve it by brute force enumera-
tion. However, even if the number of attributes n is 4, this is not practical. In present-
day practice in the Port of Long Beach/Los Angeles, the nation's busiest port, n = 4.
Several classes of BDFs have been found for which an efficient solution is possible.
This is the case for k-out-of-n systems, certain series-parallel systems, read-once sys-
tems, “regular systems”, and Horn systems.

a0

0 a1

0 1

a0

a2

0 1

a1

0 a2

0 1

a2

a1

1

0

a0

0 1

Figure 1. Figure 3. Figure 2.

3.2. Complete, Monotone Boolean Functions

One approach to the problem, therefore, is to make special assumptions about the
Boolean function F. For “monotone” Boolean functions, integer programming formu-
lations give promising heuristics. A Boolean function is monotone if given two strings
x1,x2…xn, y1,y2…yn with xi ≥ yi for all i, then F(x1,x2…xn) ≥ F(y1,y2…yn). Stroud and
Saeger limit their analysis to complete, monotone Boolean functions, where a Boo-
lean function F is incomplete if F can be calculated by finding at most n-1 attributes
and knowing the value of the input string on those attributes. The rationale for limit-
ing the analysis is that sensors detect “bad” things so a positive reading should make
things worse (monotonicity) and that all sensors should be in a BDT (completeness).
Stroud and Saeger enumerate all complete, monotone Boolean functions and then cal-
culate the least expensive corresponding BDTs under assumptions about various costs
associated with the trees. Their method is practical for n up to 4, but not n = 5.

The problem is exacerbated by the number of BDFs. For example, for n = 2, there
are 6 monotone Boolean functions; only 2 are complete and monotone; and there are
4 binary decision trees for calculating these 2 complete, monotone Boolean functions.
For n = 3, there are 9 complete, monotone Boolean functions and 60 distinct binary
trees for calculating them. For n = 4, there are 114 complete, monotone Boolean func-
tions and 11,808 distinct corresponding BDTs. Compare this with 1,079,779,602
BDTs for all Boolean functions! For n = 5, there are 6894 complete, monotone Boo-
lean functions and 263,515,920 corresponding BDTs. Even worse: compare 5 x 1018
BDTs corresponding to all Boolean functions. (Counts are from Stroud-Saeger.)

3.3. Cost of a BDF

We seek a least-cost Boolean function and in particular a least-cost corresponding
BDT. How does one calculate cost? The cost of an inspection scheme is not just
measured by the number of sensors in the BDT. Using a sensor has several costs: the
unit cost of inspecting one item with it, the fixed cost of purchasing and deploying it,
and the delay cost from queuing up at the sensor station. In our study, we have disre-
garded the fixed and delay costs and so sought to minimize unit costs. Of course, unit
costs should be looked at probabilistically. How many nodes of the decision tree are
actually visited during the "average" container’s inspection? This depends on the “dis-
tribution” of containers. In this study, we assume this distribution has been used to
obtain the probability of sensor errors, we also assume we know the probability of a
bomb in a container, and we seek to estimate the expected cost of utilizing a tree, the
expected sum of unit costs. We denote this expected utilization cost by Cutil. More so-
phisticated models would include models of the distribution of attributes of containers
and a more refined analysis of expected cost of utilizing the tree, bringing in delay
costs. The other key costs associated with a BDF or corresponding BDT are the cost
of a false positive and of a false negative. The former is the cost of additional tests. If
it means opening the container, it is relatively expensive. The latter involves complex
issues such as estimating the cost of a bomb going off in a large city.

3.4. Sensor Errors

A more refined analysis models sensor errors. In the simplest model, we assume that
all sensors checking for attribute ai have the same fixed probability of saying ai is 0 if
in fact it is 1, and similarly saying it is 1 if in fact it is 0. A more sophisticated analy-
sis later will describe a model for determining probabilities of sensor errors. In what
follows, we use the notation X for state of nature (bomb or no bomb) and Y for the
outcome 0 or 1 of a sensor inspection or of the entire inspection process. The total
(expected) cost of utilizing a tree is given by

CTot = CFP*PFP + CFN *PFN + Cutil (1)

where CFP is the cost of false positive (Type I error); CFN is the cost of false negative
(Type II error); PFP is the probability of a false positive occurring; PFN is the probabil-
ity of a false negative occurring; Cutil is the expected cost of utilization of the tree.

4. The Stroud-Saeger Calculations

Stroud and Saeger ranked all trees formed from three or four sensors according to in-
creasing tree costs. We denote sensors by A, B, C and D. Stroud and Saeger used the
cost function defined in Equation (1). Assumptions in their work were specific values
for the properties of the sensors, i.e., cost of utilizing them and probabilities of false
positive and false negative sensor outcomes. Specifically, the values used in their
analysis were as follows, where CA is the unit cost of utilizing a sensor of type A, YA
the outcome of inspection on a container by sensor A, etc.

CA = .25 P(YA=1|X=1) = .9856 P(YA=1|X=0) = .0144

CB = 10 P(YB=1|X=1) = .7779 P(YB=1|X=0) = .2221

CC = 30 P(YC=1|X=1) = .9265 P(YC=1|X=0) = .0735

CD = 1 P(YD=1|X=1) = .9893 P(YD=1|X=0) = .0107
Also fixed were the three parameters we call base parameters: CFN, CFP, P(X=1).

The purpose of our work was to explore the sensitivity of the Stroud-Saeger conclu-
sions about optimal BDTs to changes in values of the parameters defining the prob-
lem. In this paper, we explore changes in the base parameters.

A

1

1 C

D

0 11

0

0

D

C 1

A

Tree 37

A

C

1

D

0 D

0
Tree 49

1

1
Tree 55

Figure 4. Trees that attained top rank for experiments with n = 3.

5. Sensitivity Analysis for the Case of Three Attributes

We started by looking at the case n = 3 and used sensors A, C and D in our BDTs. In
our computer experiments, we used ranges for the values of base parameters. CFN was
varied between $25 million and $500 billion. These are low and high estimates of the
direct and indirect costs incurred due to a false negative - interpreted as the cost of a
bomb going off in a large city. Stroud and Saeger used the value $50 billion and we
sought to use numbers that were much higher and much lower than this. CFP was var-
ied between $180 and $720. This is interpreted as the cost incurred due to a false posi-
tive, which requires opening the container with 4 men working on it. The estimates
ranged from a low of 4 men working 3 hours at a salary of $15/hour to 4 men working
6 hours at a salary of $30/hour. Stroud and Saeger used the value $600. Finally,
P(X=1) was varied between 3x10-9 and 1x10-5. These numbers were chosen to give a
wide range around the Stroud-Saeger-assumed value of 3x10-8.

In the first sets of experiments, we chose a fixed value for one of the base parame-
ters. In one set of experiments, the value was chosen at random from its interval, and
in another, the value was fixed at that used by Stroud and Saeger. In each of 10,000
runs, we picked the values of the other two base parameters randomly and uniformly
from their interval of values and then found the highest ranked tree. Results of the ex-
periments are shown in Table 1.

In all of these experiments, only three trees out of a possible 60 ever came out
ranked first: Trees numbered 37, 49, and 55 in the Stroud-Saeger enumeration. They
are shown in Figure 4. Tree 55 was predominantly the top-ranked tree, except in the
runs when P(X=1) was fixed at the Stroud-Saeger value, in which case tree 37 was
predominantly first. Tree 49 never appeared more than 1.21% of the time in any one
of the experiments.

Similar experiments were performed by fixing two of the base parameters and
varying the third, with fixed values either being chosen (independently) randomly in
their intervals or at the Stroud-Saeger values. Results are shown in Table 2. Again,
only the same three trees, 37, 49, and 55, were ever ranked first, with trees 37 and 55
again dominating and tree 49 only appearing once more than 1% of the time. The ro-
bustness of the results of the experiments with n = 3 is quite surprising.

A comparison of the BDF corresponding to trees 37, 49, and 55 is also interesting.
Tree 37 corresponds to the Boolean expression 00011111, which represents the se-
quence F(000)F(001)…F(110)F(111). Tree 49 corresponds to the Boolean expression

Table 1 Frequency that trees attained top rank when n = 3. One parameter was fixed at a ran-
domly selected value from its interval and then at Stroud and Saeger values, and the other two
parameters were assigned 10,000 randomly chosen values from their intervals

Randomly Selected Values Stroud and Saeger Values
Variables Fixed

Value Tree No. Frequency Value Tree No. Frequency

P(X=1) 37 343 37 441
49 37 49 66 CFP

CFN 8.2737x1010

55 9620
5x1010

55 9493
CFN 37 99 37 9923

49 8 CFP
P(X=1) 0.5538x10-5

55 9893
3x10-8

55 77

P(X=1) 37 412 37 541
49 121 49 53 CFN

CFP 668.1793
55 9467

600
55 9406

Table 2 Frequency that trees attained top rank when n = 3. Two parameters were fixed at ran-
domly selected values from their intervals and then at Stroud and Saeger values, and the third
parameter was assigned 10,000 randomly chosen values from its interval

Randomly Selected Values Stroud and Saeger Values Variables Fixed
Value Tree No. Frequency Value Tree No. Frequency

P(X=1) 0.1281x10-5 37 568 3x10-8
CFN CFP 492.6116 55 9432 600

37 10000

CFN 4.747x1011 37 54 5x1010 37 694
49 108 P(X=1)

CFP 351.9526 55 9946 600
55 9198

P(X=1) 0.8373x10-5 3x10-8
CFP

CFN 4.2681x1011
55 10000

5x1010
37 10000

01010111 and tree 55 to the Boolean expression 01111111. Thus, in Tree 55, a con-
tainer is called suspicious if it fails at least one test. In Tree 37, a container is called
suspicious if it fails the first test or if it fails both the remaining tests. In Tree 49, a
container is called suspicious if it fails at least two tests or fails only the third one.

 6. Sensitivity Analysis for the Case of Four Attributes

Turning to the case n = 4, we used sensors A, B, C, and D in our BDTs and used
the same interval of values for the parameters CFP, CFN and P(X=1) as before. We ran
the same kinds of experiments as in the case n = 3. Tables 3 and 4 show the results
(omitting trees that were rarely ranked first). When one base parameter was fixed,
only five trees ever appeared first more than 1% of the time in an experiment: Trees
numbered 6797, 8965, 9133, 11605, and 11785 in the Stroud-Saeger numbering. Each
appeared first at least 5% of the time in at least one experiment. These trees are shown
in Figure 5. If we consider trees appearing first at least .99% of the time, only tree
11305 gets added to the list. In each experiment, one tree dominated first place, ex-
cept in the experiment where P(X=1) was fixed at the Stroud-Saeger value, when two
trees dominated. Considering the fact that there are 11,808 candidate trees, this is re-
markable stability of results.

In the case where two base parameters were held fixed, again the same five trees
dominated as the only trees appearing first at least 1% of the time in any experiment.
Indeed, only they appeared first at least .02% of the time in any experiment. Only a
sixth tree, 11305, which also appeared in the experiments with one base parameter
held fixed, appeared if we consider trees that were ranked first in at least .017% of the
runs in some experiment. Again, the stability of the top-ranked trees is quite striking.

For the five top trees, it is interesting the compare the Boolean expression corre-
sponding to F(0000)F(0001)…F(1011)F(1111). Tree 6797 corresponds to expression

Table 3 Frequency that trees attained top rank when n = 4. One parameter was fixed at a ran-
domly selected value from its interval and then at Stroud and Saeger values, and the other two
parameters were assigned 10,000 randomly chosen values from their intervals. Trees with small
frequency of top rank are not shown

Randomly Selected Values Stroud and Saeger Values Variables Fixed
Value Tree No. Frequency Value Tree No. Frequency

8965 121 8965 117 P(X=1)
9133 392 9133 374
11305 99 11305 96 CFP

CFN 4.7485x1010

11605 9351

5x1010

11605 9381
CFN 9133 65 6797 558

11605 7928 8965 3833 CFP
P(X=1) 0.6344x10-5

11785 1979
3x10-8

9133 5406
P(X=1) 9133 235 9133 184

11605 8621 11605 9232 CFN
CFP 453.6849

11785 1062
600

11785 333

0 1

A

1

C

B

1

D

0 1

0

DC

B

0

D

1

A

C

0

0

D

1

0

1D

B

C 1

1

Tree 6797

1

0

0 1 D

C D

B

A

0

1

Tree 8965
A

1B

C

0

D

1

0

D

1

1 1

A

1
C

B

1

0

D

1
Tree 11605 Tree 9133 Tree 11785

Figure 5. Trees that attained top rank most frequently for the experiments with n = 4

Table 4 Frequency that trees attained top rank when n = 4. Two parameters were fixed at ran-
domly selected values from their intervals and then at Stroud and Saeger values, and the third
parameter was assigned 10,000 randomly chosen values from its interval. Trees with small fre-
quency of attaining top rank for n = 4 are not shown

Randomly Selected Values Stroud and Saeger Values Variables Fixed
Value Tree No. Frequency Value Tree No. Frequency

9133 47 6797 897 P(X=1) 0.6284x10-5

11605 3614
3x10-8

8965 8671 CFN

CFP 188.5681 11785 6339 600 9133 309
9133 44 8965 237 CFN 4.0624x1011

11605 4551
5x1010

9133 357
11305 170

P(X=1)
CFP 297.5277 11785 5405 600

11605 9156
P(X=1) 0.5992x10-5 11605 9087 3x10-8 6797 2336

8965 3942 CFP
CFN 2.4041x1011 11785 913 5x1010

9133 3722

0001000101111111, tree 8965 to 0001010101111111, tree 9133 to
0001010111111111, tree 11605 to 0101011111111111, and tree 11785 to

0111111111111111. The expressions for trees 11605 and 11785 differ in only two
places, as do those for trees 9133 and 11605. There can be quite a difference in Boo-
lean expressions, however. Those for trees 6797 and 11785 differ in six places.

7. Modeling Sensor Errors using Thresholds

One approach to sensor errors involves modeling sensor operation/interpretation of
sensor readings. A natural model, one used by Stroud and Saeger, is a threshold
model using counts (e.g., Gamma radiation counts). If the count exceeds some thresh-
old, we conclude that the attribute being tested for is present. To describe such a
threshold model, suppose that sensor i has discriminating power Ki and let the thresh-
old for sensor i be denoted by Ti. We calculate the fraction of containers in each cate-
gory whose readings exceed the threshold. While sensor characteristics are a function
of design and environmental conditions, the thresholds can be set by the decision
maker.

 The Stroud-Saeger approach is to seek threshold values that minimize all costs: in-
spection, false positive/negative. The readings of sensors are also determined by their
design and environmental conditions. Let us assume that readings of category 0 con-
tainers (those not containing a bomb) follow a Gaussian distribution and similarly
category 1 containers (those containing a bomb). See Figure 6, in which Σi is the rela-
tive spread factor and PD is the probability of detection by the ith sensor P(Yi=1|X=1)
while PF is the probability of a false positive at the ith sensor P(Yi=1|X=0). The prob-
ability of false positive for the ith sensor is computed as:

P(Yi=1|X=0) = 0.5 erfc[Ti/√2], (2)

while the probability of detection for the ith sensor is computed as

P(Yi=1|X=1) = 0.5 erfc[(Ti-Ki)/(Σ√2)], (3)

where erfc, the complementary error function, is given by

erfc(x) = Г(½,x2)/√ π. (4)

We ran experiments with this model by choosing the following values of sensor
parameters also used by Stroud-Saeger: KA = 4.37, ΣA = 1; KB = 1.53, ΣB = 1; KC =
2.9, ΣC = 1; KD = 4.6, ΣD = 1. We then varied the individual sensor thresholds TA, TC
and TD (for n = 3) from -4.0 to +4.0 in steps of 0.4. These values were chosen since
they gave us an “ROC curve” (see Section 8) for the individual sensors over a com-
plete range P(Yi=1|X=0) and P(Yi=1|X=1). The base parameters were chosen at ran-
domly selected values in these intervals.

In the case n = 3, 68,921 experiments were conducted, as each Ti was varied
through its entire range. As seen from Table 5, a total of 15 different trees were
ranked first in these experiments, more than were obtained in our earlier experiments.
Tree 37 had the highest frequency of attaining rank one, appearing first 17,515 times.
A few of the other trees that ranked first a relatively large number of times were trees
numbered 7 and 55. Note that 37 and 55 also predominated in our other experiments.

In the case n = 4, 194,481 similar experiments were conducted. A total of 244 trees
ranked first, with tree 445 the most frequent (13,012 times). Other trees often ranked
first in our other experiments were here too: 9133, 11605, and 11785. Results for
these experiments with n = 4 are summarized in Table 5.

8. Using the ROC Curve

We can use Receiver Operating Characteristic (ROC) curves to identify optimal
thresholds for sensors. The ROC curve is the plot of the probability of correct detec-
tion (PD) vs. the probability of a false positive (PF). The ROC curve is used to select
an operating point, which provides the tradeoff between PD and PF. Each sensor has a
ROC curve and the combination of the sensors into a decision tree has a composite
ROC curve. We seek operating characteristics of sensors that place us in the upper left
hand corner of the ROC curve. Here, PF is small and PD is large.

The parameter that is varied to get different operating points on the ROC curve is
the sensor threshold and a combination of thresholds for the decision tree. The Equal
Error Rate (EER) is the operating point on the ROC curve where PF = 1 – PD. By
studying the performance characteristics (P(Y=1|X=0), P(Y=1|X=1)) of the tree over
all combinations of sensor thresholds (Ti) and studying the region of high detection
probabilities and low false positive probabilities, we can use the ROC curve to choose
threshold values in practice. Assuming performance probabilities (P(Y=1|X=1) and
P(Y=1|X=0)) to be monotonically related (in the sense that P(Y=1|X=1) can be called
a monotonic function of P(Y=1|X=0)), we can find an ROC curve for the tree consist-
ing of the set containing maximum P(Y=1|X=1) value corresponding to given
P(Y=1|X=0) value.

Σ = σ1/σ0 σ1
σ0

Figure 6. Typical sensor characteristics.

9. Conclusions, Discussion, and Further Work

Our work has shown a remarkable robustness in the conclusions about optimal binary
decision trees in sequential decision making applications in inspection applications.
Very few trees arise as optimal over a wide range of choices of values for the key pa-

rameters in the model. Moreover, there is also considerable robustness in the optimal
Boolean decision function – very few decision functions correspond to the optimal
trees and those that do often are closely related. We do not yet have a good theoretical
explanation for these conclusions about robustness. We also do not have a good un-
derstanding, as yet, of the relations between the different optimal trees, in particular
their tree structure. Our results should be regarded as preliminary, though intriguing
and suggesting many questions.

Table 5 Frequency that trees attained top rank when thresholds were varied. The base parame-
ters were fixed at randomly selected values from their intervals. For n = 3 sensors, 15 out of 60
trees came out to be top rank. For n = 4 sensors, only 244 out of 11,808 trees attained top rank.
Trees with small frequency of attaining top rank for n = 4 are not shown

n=3, number of experiments = 68,921 n=4, number of experiments = 194481
Constants Tree No. Frequency Constants Tree No. Frequency

1 5828 87 3402
2 183 145 11143
7 13392 325 5574

15 2437 386 4018
19 5256 445 13012
23 1475 505 10545
25 957 506 5249
27 114 2617 10139
29 146 5761 5942
37 17515 8003 4539
38 4572 9133 9280
45 5873 10783 4496
49 264 11605 10958
51 322 11785 5910

CFN =
5.0125x109

P(X=1) =

5.05x10-6

and CFP =

450

55 10587

CFN =
4.8668x1011

P(X=1) =

7.5361x10-6

and CFP =
499.75

11791 5196

As Stroud and Saeger have noted, their method does not scale very well. We have

already reached limits of computation for the case of n = 4 types of inspections. With
n = 5, similar experiments seem infeasible. We did these calculations with Matlab on
a Pentium IV 3 GHz processor, with 1GB of RAM. Other methods are needed to find
optimal trees if we have more types of sensors and to investigate the sensitivity of the
conclusions.

There are more experiments that we propose to do to test sensitivity of the Stroud-
Saeger conclusions. In particular, our experiments have fixed the characteristics of the
sensors through such parameters as CA, KA, P(YA = 1|X = 0), etc. We only did experi-
ments by using specific values of parameters. The optimal tree is certainly related to
these characteristics of the available sensors. We will do other experiments in which
these values are varied.

We have not done a lot of analysis of the robustness of the second, third, and
fourth-ranked trees, though initial results show a great deal of robustness akin to that
reported here. In practical applications, a near-optimal tree might very well be a per-
fectly acceptable solution to the inspection problem. In this case, there might be more
efficient methods for finding near-optimal trees than the brute force methods de-
scribed by Stroud and Saeger and tested here.

The methods here and in Stroud-Saeger depend heavily on being able to limit the
number of possible Boolean decision functions and hence the number of possible
BDTs. In particular, they depend on the monotonicity and completeness assumptions.
More work is needed to explore alternative assumptions that are relevant to the port of
entry inspection applications.

In practice, one thinks of n types of sensors that measure presence or absence of
the n attributes. There are many copies of each sensor. A complication is that different
sensor types have different characteristics. As containers arrive for inspection, we
have to decide which sensor of a given type to use. The containers are sent to different
inspection lanes, each having a particular test (sensor), and the containers form
queues. Recall that the “cost” of inspection includes the cost of failure, including fail-
ure to foil a terrorist plot. There are many ways to lower the total “cost” of inspection.
Only one is to use more efficient orders of inspection. Others are to find ways to in-
spect more containers, to find ways to cut down on delays at inspection lanes, etc.
More complicated cost models would bring in costs of delays and also consider the
limits on delays that are imposed by the need to keep the port operating. Besides effi-
cient inspection schemes, one could decrease costs by buying more sensors or chang-
ing the allocation of containers to sensor lanes.

Another variant of the Stroud-Saeger model would have us go to more than two
values of an attribute, e.g., present, absent, present with probability > 75%, absent
with probability at least 75%; or ok, not ok, ok with probability > 99%, ok with prob-
ability between 95% and 99%. Still another approach would have us infer the Boolean
function from observations. There is a considerable literature that deals with partially
defined Boolean functions (see for example [1, 2, 3]). Still another approach would
use machine learning methods to learn the thresholds of the sensors in order to mini-
mize the misclassification error of the entire tree, subject to the constraint of minimiz-
ing the total cost of the generated tree.

References

1. Boros, E., Ibaraki, T. and Makino, K., “Logical Analysis of Binary Data with Missing Bits,”
Artificial Intelligence, 107 (1999), 219-263.

2. Boros, E., Ibaraki, T. and Makino, K., “Variations on Extending Partially Defined Boolean
Functions with Missing Bits,” Information and Computation, 180 (2003), 53-70.

3. Chiu, S.Y., Cox, L.A. and Sun, X., “Least-Cost Failure Diagnosis in Uncertain Reliability
Systems,” Reliability Engineering and System Safety, 54 (1996), 203-216.

4. Duffuaa, S. O., and Raouf, A., “An Optimal Sequence in Multicharacteristics Sequence,”
Journal of Optimization Theory and Applications, 67 (1990), 79-87.

5. Hyafil, L. and Rivest, R. L., “Constructing Optimal Binary Decision Trees is NP-Complete,”
Information Processing Letters, 5 (1976), 15-17.

6. Lauritzen, S. N., and Nilsson, D., “Representing and Solving Decision Problems with Lim-
ited Information,” Management Science, 47 (2001), 1238-1251.

7. Simon, H. A. and Kadane, J. B., “Optimal Problem-Solving Search: All-or-None Solutions,”
Artificial Intelligence, 6 (1975), 235-247.

8. Stroud, P. D. and Saeger K. J., “Enumeration of Increasing Boolean Expressions and Alter-
native Digraph Implementations for Diagnostic Applications,” Proceedings Volume IV,
Computer, Communication and Control Technologies, (2003), 328-333

	3.2. Complete, Monotone Boolean Functions

