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Abstract A k-tuple coloring of a graph G assigns a set of k colors to each vertex of
G so that if two vertices are adjacent, the corresponding sets of colors are disjoint.
The k-tuple chromatic number of G is the smallest ¢ so that there is such a k-tuple
coloring of G using ¢ colors in all. The Kneser graph K(m,n) has as vertices all
n-element subsets of the set {1,2,...,m} and an edge between two subsets iff they
are disjoint. The value of the k-tuple chromatic number of the Kneser Graph is the
subject of a 30-year-old conjecture of Saul Stahl. This paper summarizes known
results about Stahl’s Conjecture and applies the ideas to answer two questions of
N.V.R. Mahadev about the relation between the n-tuple chromatic number of a graph
and n times the size of its largest clique.

1 Introduction

Graph coloring is an old subject with many important applications. Variants of graph
coloring are not only important in their various applications, but they have given rise
to some very interesting mathematical challenges and open questions. Our purpose
in this mostly expository paper is to draw attention to a conjecture of Saul Stahl’s
about one variant of graph coloring, k-tuple coloring. Stahl’s Conjecture remains
one of the long-standing, though not very widely known, conjectures in graph the-
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ory. We also apply a special case of the conjecture to answer two questions about
k-tuple coloring due to N.V.R. Mahadeyv.

An interesting and important variant of ordinary graph coloring involves assign-
ing a set of k colors to each vertex of a graph so that the sets of colors assigned
to adjacent vertices are disjoint. Such an assignment is called a k-fuple coloring of
the graph. k-tuple colorings were introduced by Gilbert [6] in connection with the
mobile radio frequency assignment problem (see [15, 17, 18, 19]). Other applica-
tions of such multicolorings include fleet maintenance, task assignment, and traffic
phasing. These are discussed in [15, 18, 19] and elsewhere. Among the early pub-
lications on this topic are [1, 2, 5, 20, 23]. Given a graph G and positive integer &,
we seek the smallest number # so that there is a k-tuple coloring of G using colors
from the set {1,2,...,¢}. This 7 is called the k" multichromatic number or k-tuple
chromatic number of G and is denoted by xi(G). Of course, if k = 1, xx(G) is just
the ordinary chromatic number x (G).

A homomorphism from graph G to graph H is a function h assigning each vertex
of G to a vertex of H so that if x and y are adjacent in G, then A(x) and A(y) are
adjacent in H. It is well known that an ordinary graph coloring of a graph G with m
colors is a homomorphism from G into the complete graph K,, of m vertices. Sim-
ilarly, an n-tuple coloring of a graph G with m colors is a homomorphism from G
into the Kneser graph K(m,n). This is the graph whose vertex set consists of all n-
element subsets of {1,2,...,m}, and which has an edge between two such subsets if
they are disjoint. (We assume m > 2n, for otherwise K (m,n) has no edges.) Lovédsz
[13] computed the ordinary chromatic number ) (K (m,n)) in the process of settling
the famous Kneser Conjecture:

Kneser’s Conjecture: If the n-element subsets of a 2n + p-element set are split into
p+ 1 classes, then one of the classes will contain two disjoint n-element sets.

Restated, the conjecture says the following:
Kneser’s Conjecture Restated: x (K(2n+ p,n) > p+2.

Lovész proved this conjecture by showing the following:
Theorem 1.1 (Lovasz [13]): x(K(m,n)) =m—2n+2,m > 2n.

This leads naturally to the question: What is ¥y (K(m,n))? In [23], Stahl conjec-
tured the following:

Stahl’s Conjecture: If k = gn —r,q > 1,0 < r < n, then x;(K(m,n)) = gm —2r.

This conjecture has remained open since 1976 and very little progress has been
made on it since Stahl’s original paper. Section 2 summarizes what is known about
Stahl’s Conjecture. We make use of Lovdsz’ Theorem and a special case of Stahl’s
Conjecture in Section 3. Our purpose is to illustrate an amusing application of these
two ideas and at the same time highlight Stahl’s Conjecture.
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It is easy to show that n@(G) < x,(G) < nx(G), where ©(G) is the size of the
largest clique of G. Hence, the weakly y-perfect graphs, those for which y = @, have
the property that x,(G) = nx(G). This observation led N.V.R. Mahadev [14] to ask
how good the lower bound n®(G) for x,(G) is. In particular, he asked the following
questions, which we settle in Section 3.

e Question 1: If y,(G) = now(G), does this imply that x(G) = ©0(G)?

Question 1 suggests that if x(G) # ©(G), then x,(G) > nw(G) + 1. Mahadev
conjectured that the answer to the following question is true:

e Question 2: Is x,(G) > nw(G) + [x(G) — ©(G)]?

In Section 3, we settle these questions, using Lovasz’ Theorem and a special case
of Stahl’s Conjecture.

2 Known Results Concerning Stahl’s Conjecture

Here we recall some known results.
Stahl [23] showed that the upper bound in his conjecture always holds:

Theorem 2.1 (Stahl ([23]): If k = gn —r,q > 1,0 < r < n, then x(K(m,n)) <
qgm—2r.

We will need the following result in the next section. It also gives a simple proof
that Stahl’s Conjecture holds if 1 <k < n.

Theorem 2.2 (Stahl ([23]): If G has an edge and n > 1, then %,(G) > 2+ x,—1(G).
Theorem 2.3 (Stahl ([23]): If 1 <k <n, then xx(K(m,n)) =m—2(n—k).

Proof. The upper bound follows by Theorem 2.1. The lower bound follows by re-
peated use of Theorem 2.2 and Theorem 1.1. a

Corollary 2.4 (Stahl ([23]): Stahl’s Conjecture holds if 1 <k <n.
Theorem 2.5 (Stahl ([23]): x,.,(K(m,n)) = um,u > 0.

Corollary 2.6 (Stahl ([23]): Stahl’s Conjecture holds if k = un,u > 0.
Theorem 2.7 (Stahl ([23]):

k—1

Corollary 2.8 (Stahl ([23]): Stahl’s Conjecture holds if m = 2n+ 1.

Xe(K(2n+1,n)) =2k+ 1+ |

Theorem 2.9 > Stahl’s Conjecture holds for n = 2,3.

2 This was proven in [24]. According to [24], it was independently and previously proven for n =2
by Claude Tardif.
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Theorem 2.10 (Garey and Johnson [5]): Stahl’s Conjecture holds if n = 3,k =
4,m>6

By using gn+ p = (¢+ 1)n— (n— p), we see that Stahl’s conjecture is equivalent
to

If k=gn+p,q>0,0<p<n,then x;(K(m,n)) = gm—+m—2n+2p.

By Theorem 2.1, we know that the upper bound in Stahl’s conjecture holds. By
Theorems 2.2 and 2.5, the lower bound follows if
Xng+1 (K(mvn)) 2 an(K(m7 n)) +m—2n+2,
i.e., if the lower bound holds for p = 1. As Osztényi [16] points out, it follows from
a result of Stahl [24] that
Xng+1(K(m,n)) = Yng(K(m,n)) +m—n+2—f(n),
where f(n) = n?> —3n+4. This shows that, given n and ¢ € (0, 1), we have

Xng+1(K(m,1)) = 2ng (K (m,n)) + clm —2n+2]
for m large enough. Note that if m < n> —n +4, Stahl’s results in [24] imply that

Ing+1(K(m,n)) = Yng(K(m,n)) +2.
Ostényi [16] shows that, in fact,

%nq+1(K(m7n)) > an(K(man)) +3

for all positive integers n,m, g.3

There have been few other results about Stahl’s conjecture over the years, though
it is mentioned from time to time in the literature. Frankl and Fiiredi [4] discuss
extremal problems on Kneser graphs and mention the Stahl Conjecture. Tardif and
Zhu [25] show that if the conjecture is true, then only very few Kneser graphs are
multiplicative. (A graph K is called multiplicative if for any two graphs G and H
that are not homomorphic to K, their categorical product or tensor product is also
not homomorphic to K.)

3 Answers to Mahadev’s Questions

We first show that Question 2 has an affirmative answer if @ = 2.

Proposition 3.1 If ©(G) =2, then

3 The author thanks Jézsef Ostényi for sharing an early version of his paper, in which these ideas
are developed.
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1n(G) 2 no(G) + [x(G) — o(G)].

Proof. Suppose 0(G) = 2. By Theorem 2.2,

%(G) 2 2(n—=1) + 11 (G).
Thus, since ®(G) =2 and x;(G) = x(G),

1n(G) 2 no(G) + [x(G) — o(G)].

O
We observe next that the bound in Question 2 fails in general.
Proposition 3.2 There are graphs for which
xn(G) <no(G) +[x(G) — o(G)].
Proof. By Theorem 2.5, we know that
Xn(K(m,n)) = m. (1)
By Theorem 1.1,
x(K(m,n)) =m—2n+2. (2)

Since a clique in K(m,n) consists of a disjoint collection of n-element subsets of
{1,2,...,m}, we note that

o(K(m.n) =

] 3)
If

1n(G) = nw(G) + [x(G) — o(G)],
then by (1), (2), and (3), we have

m= (K (m,n)) >nx L%J S (m—2n+2)— L%J zn(% 1)+ (m—2n+2)—m/n,
SO

3n—m+%—220. 4)
Certainly if m = pn,p > 4,n > p, then (4) fails. a

We next observe that the answer to Question 1 is “no”.

Proposition 3.3 There are graphs for which x,(G) = nw(G), but x(G) # ©(G).
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Proof. Consider the Kneser graph K(m,2) for m even. By (1) and (3),

2(K(m,2)) = m = 20(K(m,2)).
However, by (2),

2(K(m,2)) =m—2,
while by (3),

o(K(m,2)) =m/2,
so X # @ already for m = 6. O

4 Closing Remarks

Several other related directions of work are of interest. Hilton, Rado, and Scott [9]
define the multichromatic number (sometimes called the ultimate chromatic num-
ber) x*(G) to be infy(x(G)/k). Clarke and Jamison [2], Lovész [12], and Scott
[20] independently showed that this is equal to x,(G)/g for some g. Of course, if
G is weakly y-perfect, then ¢ = 1. Johnson, Holroyd, and Stahl [10] showed that
x*(K(m,n)) =m/n, if n > 2,m > n. They studied the relation between the multi-
chromatic number and star chromatic number introduced by Vince [26]. Another
long-standing conjecture in graph theory is the conjecture in [10] that the star chro-
matic number of a Kneser graph is equal to its chromatic number. Simonyi and Tar-
dos [21] proved this conjecture if the chromatic number is even. The star chromatic
number arises by considering the set of colors M = {1,2,...,m} as residue classes
modulo m. Thus, the distance d(x,y) between two colors x,y in M is the distance
between x and y around the circle of M points, i.e., the minimum of (x — y)mod(m)
and (y — x)mod(m). Assume that m, D are positive integers, G has at least one edge
and has chromatic number at most m. Then an (m,D)-coloring of G is an assign-
ment of a color f(a) to every vertex a of G using residue classes modulo m so that
the minimum d(f(a), f()) is at least D. We define 1,,(G) to be the maximum D so
that G has an (m, D)-coloring. The star chromatic number 1(G) is infy, N (G).

Clarke and Jamison [2], Lovasz [12], and Scott [20] observed that the multichro-
matic number can be calculated by a linear program. This number and the k-tuple
chromatic number are closely related to the fractional chromatic number that can
also be calculated by a linear program. For an early summary of the relationships
among k-tuple chromatic numbers, multiple chromatic numbers, fractional chro-
matic numbers, and their analogues for independence number, clique number, and
clique covering number, see [8]. For a comprehensive summary of the literature of
fractional chromatic number, see [22].

Klostermeyer and Zhang [11] showed that any planar graph G with odd girth at
least 10n —7,n > 2, has a homomorphism to the Kneser graph K(2n+ 1,n), i.e.,
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Xn(G) <2n+ 1. (The case n = 1 fails since that would say that every planar graph
of odd girth at least 3 is 3-colorable. However, by Grotzsch’s Theorem [7], every
planar graph of odd girth at least 5 is 3-colorable.)

It is not hard to show that for any graph G,

Xi+1(G) < 2(G) + x(G) <22:(G). (5)

Indeed, the first part follows from the more general result in [23] that

Xap+r(G) < qxp(G) + x:+(G). (6)

Equation (5) for G = K(m,n) follows directly from Theorem 2.3 if 1 <k < n.
Loviasz [3] asked whether, for every k, there are graphs G for which x;.1(G) >
(2 — €)xx(G). Chvital, Garey, and Johnson [1] showed that this was indeed the
case.

It should be noted that x,(G) can be arbitrarily larger than n®(G) + [x(G) —
®(G)]. Indeed, the odd cycles C5, 1 illustrate this point. Stahl [23] shows that

n—1
Xn(Copi1) =2n+ 14+ LTJ

However,
n@(Copi1) + (X (Copr1 — 0(Cops1)] =2n+ 1.
One can ask for a characterization of graphs for which
xn(G) = no(G) + [x(G) — 0(G)]
and also for a characterization of graphs for which
Xn(G) > no(G) + [x(G) - 0(G)]
and one of graphs for which

xn(G) <no(G) +[x(G) — o(G)].

These make for intriguing open questions.
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