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Main Attractions

» Efficient: linear, embarrassingly parallel operations
P Resists quantum attacks (so far)

» Security from worst-case assumptions

> Solutions to ‘holy grail" problems in crypto: FHE and related

(Images courtesy xked.org) 2/14
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» Decision: distinguish (a; , b;) from uniform (a; , b;)

LWE is Hard and Versatile

worst case
(n/a)-SIVP on < search-LWE < decision-LWE < much crypto

n-dim lattices il il
(quantum [R’05])  [BFKL'93,R05,...]

» Classically, GapSVP < search-LWE (worse params) [P'09,BLPRS'13]
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LWE Hardness and Parameters

P> Parameters: dimension n, integer modulus g, error ‘rate’ «

Worst case SIVP < Search-LWE

» One reduction for best known parameters: any q > \/n/a [R'05]

Search-LWE < Decision-LWE

> Messy. Many incomparable reductions for different forms of ¢:

* Any prime ¢ = poly(n) [R'05]
* Any “somewhat smooth” ¢ = p; - --p; (large enough primes p;) [P'09]
* Any g = p° for large enough prime p [ACPS'09]
* Any ¢ = p® with uniform error mod p’ [MM'11]
* Any g = p® — but increases « [MP'12]
* Any ¢ via “mod-switching” — but increases @ [P'09,BV'11,BLPRS'13]

P Increasing g, « yields a weaker ultimate hardness guarantee.
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LWE is Efficient (Sort Of)

» Getting one pseudorandom
scalar requires an n-dim inner
product mod ¢

(ai)|s|+e=0b€Ze Can amortize each a; over many
: secrets s;, but still O(n) work
per scalar output.

» Cryptosystems have rather large keys: Q(n?log? q) bits:

pk = A , b | pQn)
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Wishful Thinking. . .

> Get n pseudorandom scalars
from just one cheap product

a|x|s el = | b GZZIZ operation?

» How to define the product ‘x' so that (a;, b;) is pseudorandom?

» Careful! With small error, coordinate-wise multiplication is insecure!

Answer
» ‘%' = multiplication in a polynomial ring: e.g., Z4[X]/(X™ +1).

Fast and practical with FFT: nlogn operations mod g.

» Same ring structures used in NTRU cryptosystem [HPS'98],
& in compact one-way / CR hash functions [Mic'02,PR'06,LM'06,.. ]
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Wishful Thinking. . .

: : : : » Get n pseudorandom scalars
a |*|s|+|e| = | b | ez from _]l.JSt one cheap product
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> Ring R, often R = Z[X]/(f(X)) for irred. f of degree n (or It = Ox)

Has a ‘dual ideal’ RY (w.r.t. ‘canonical” geometry)
> Integer modulus ¢ defining R, := R/qR and R := RY /qR"

» Gaussian error of width ~ aiq over R

Search: find secret ring element s € R, given independent samples

RY. - ‘agq

a1<—Rq s b1:a]-8+61€R[\I/ L e
az < Ry bgzag's—l-GQGR(\l/ . B

Decision: distinguish (a; , b;) from uniform (a; , b;) € Ry R;/
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on ideal lattices in R 5 5
(quantum, (classical,
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(Ideal Z C R: additive subgroup, z-r € Z for all z € Z,r € R.)

o

o ideal Z=3R+(1- X)RCR

o
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Hardness of Ring-LWE [Lrr10]

worst-case (n°/a)-SIVP (o3 ch RAWE,, < decision R-LWE,,

on ideal lattices in R N N
(quantum, (classical,
any R = Ok) any Galois R)

Large disparity in known hardness of search versus decision:

Search: any number ring, any ¢ > n¢/a.

Decision: any Galois number ring (e.g., cyclotomic),
any highly splitting prime ¢ = poly(n).
Can then get any ¢ by mod-switching, but increases o [LS'15]

» Decision has no known worst-case hardness in non-Galois rings.

> But no examples of easy(er) decision when search is worst-case hard!
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New Results [prs'17]

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

worst-case (n°/a)-SIVP 4 .0 RALWE,o
on ideal lattices in B Ty ’

quantum,
any R = Ok, any q > nC*1/2/o¢

Bonus Theorem: LWE is Pseudorandom for Any Modulus

worst case (n/a)-SIVP on < decision-LWE
n-dim lattices _7 e

quantum, any ¢ > \/n/a

.

» Both theorems match or improve the previous best params:

One reduction to rule them all.

» Seems to adapt to ‘module’ lattices/LWE w/techniques from [LS'15]
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Which Rings To Use?

» Our results don't give any guidance: they work within a single ring R,
lower-bounding the hardness of R-LWE by R-ldeal-SIVP

> We have no nontrivial relations between lattice problems over
different rings. (Great open question!)

Progress on Ideal-SIVP

» Quantum poly-time exp(O(y/n))-Ideal-SIVP in prime-power
cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR’'16,CDW'17]

» Quite far from the (quasi-)poly(n) factors typically used for crypto
» Doesn't apply to R-LWE or NTRU (unknown if R-LWE < Ideal-SIVP)

» Keep using R-LWE over cyclotomics
> Use R-LWE over (slower) rings like Z[X]/(XP — X —1)  [BCLvwV'16]
» Use ‘higher rank’ problem Module-LWE over cyclotomics/others
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» Theorem: quantumly, (n/a)-SIVP < decision-LWE,, V¢ > v/n/a

» Reduction strategy: ‘play with’ «, detect when it decreases.

Suppose O solves decision-LWE, , with non-negl advantage. Define
p(3) = Pr[O accepts on LWE

1.0

g.exp(3) Samples].
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Overview of LWE Reduction
» Theorem: quantumly, (n/a)-SIVP < decision-LWE,, V¢ > v/n/a

» Reduction strategy: ‘play with’ «, detect when it decreases.

Suppose O solves decision-LWE, , with non-negl advantage. Define

p(3) = Pr[O accepts on LWE 5) samples].

g,exp(

Key Properties

@ p(B3) is 'smooth’ (Lipschitz) because D,, D, are (Z — 1)-close.

@ For all 8 >logn, p(8) ~ p(occ) = Pr[O accepts on uniform samples],
because huge Gaussian error is near-uniform mod gZ.

© p(log o) — p(o0) is noticeable, so there is a noticeable change in p
somewhere between log o and log n.
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Exploiting the Oracle

» Theorem: quantumly, (n/«)-SIVP < decision-LWE,, V¢ > /n/a
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» Theorem: quantumly, (n/a)-SIVP < decision-LWE,,

P Classical part of [Regev'05] reduction:

* ot LWE, o samples
. a=dr/q
BDD,-, dist d D, samples
P ldea: perturb t, use O to check
whether we're closer to L* by
how a = dr/q changes.
We get a ‘suffix’ of p(-). P..

Vq>n/a
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* limg, oo p(B) = p(00): huge error in one dim is ‘smooth’ mod RY.

* Problem: Reduction never® produces spherical error (all «; equal),
so it's hard to get anything useful from O.

* Solution from [LPR'10]: randomize the o;: increase by n'/* factor.

* Improvement: randomization increases «; by only w(1) factor.
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