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Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

(Images courtesy xkcd.org)

Main Attractions

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related
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Learning With Errors [Regev’05]

I Parameters: dimension n, integer modulus q, error ‘rate’ α

I Search: find secret s ∈ Znq given many ‘noisy inner products’

a1 ← Znq , b1 = 〈a1 , s〉+ e1 ∈ Zq
a2 ← Znq , b2 = 〈a2 , s〉+ e2 ∈ Zq

...

width αq

I Decision: distinguish (ai , bi) from uniform (ai , bi)

LWE is Hard and Versatile

worst case
(n/α)-SIVP on
n-dim lattices

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ much crypto

I Classically, GapSVP ≤ search-LWE (worse params) [P’09,BLPRS’13]
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LWE Hardness and Parameters

I Parameters: dimension n, integer modulus q, error ‘rate’ α

Worst case SIVP ≤ Search-LWE

I One reduction for best known parameters: any q ≥
√
n/α [R’05]

Search-LWE ≤ Decision-LWE
I Messy. Many incomparable reductions for different forms of q:

F Any prime q = poly(n) [R’05]

F Any “somewhat smooth” q = p1 · · · pt (large enough primes pi) [P’09]

F Any q = pe for large enough prime p [ACPS’09]

F Any q = pe with uniform error mod pi [MM’11]

F Any q = pe — but increases α [MP’12]

F Any q via “mod-switching” — but increases α [P’09,BV’11,BLPRS’13]

I Increasing q, α yields a weaker ultimate hardness guarantee.
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LWE is Efficient (Sort Of)

(
· · · ai · · ·

)
...
s
...

+ e = b ∈ Zq

I Getting one pseudorandom
scalar requires an n-dim inner
product mod q

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys: Ω(n2 log2 q) bits:

pk =


...
A
...


︸ ︷︷ ︸

n

,


...
b
...


Ω(n)
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Wishful Thinking. . .


...
ai
...

?


...
s
...

+


...
ei
...

 =


...
bi
...

 ∈ Znq

I Get n pseudorandom scalars
from just one cheap product
operation?
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Question
I How to define the product ‘?’ so that (ai,bi) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer
I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xn + 1).

Fast and practical with FFT: n log n operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

& in compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . . ]
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Learning With Errors over Rings (Ring-LWE) [LPR’10]

I Ring R, often R = Z[X]/(f(X)) for irred. f of degree n (or R = OK)

Has a ‘dual ideal’ R∨ (w.r.t. ‘canonical’ geometry)

I Integer modulus q defining Rq := R/qR and R∨q := R∨/qR∨

I Gaussian error of width ≈ αq over R∨

Search: find secret ring element s ∈ R∨q , given independent samples

a1 ← Rq , b1 = a1 · s+ e1 ∈ R∨q
a2 ← Rq , b2 = a2 · s+ e2 ∈ R∨q

...

R∨ αq

Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rq ×R∨q
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Hardness of Ring-LWE [LPR’10]

worst-case (nc/α)-SIVP
on ideal lattices in R

≤

(quantum,
any R = OK)

search R-LWEq,α ≤

(classical,
any Galois R)

decision R-LWEq,α
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≤
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any R = OK)

search R-LWEq,α ≤

(classical,
any Galois R)

decision R-LWEq,α

(Ideal I ⊆ R: additive subgroup, x · r ∈ I for all x ∈ I, r ∈ R.)

R = Z[X]/(1 +X +X2)

ideal I = 3R+ (1−X)R ⊂ R
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Large disparity in known hardness of search versus decision:

Search: any number ring, any q ≥ nc/α.
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any highly splitting prime q = poly(n).

Can then get any q by mod-switching, but increases α [LS’15]

I Decision has no known worst-case hardness in non-Galois rings.

I But no examples of easy(er) decision when search is worst-case hard!
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New Results [PRS’17]

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

worst-case (nc/α)-SIVP
on ideal lattices in R

≤

quantum,
any R = OK , any q ≥ nc−1/2/α

decision R-LWEq,α

Bonus Theorem: LWE is Pseudorandom for Any Modulus

worst case (n/α)-SIVP on
n-dim lattices

≤

quantum, any q ≥
√
n/α

decision-LWEq,α

I Both theorems match or improve the previous best params:

One reduction to rule them all.

I Seems to adapt to ‘module’ lattices/LWE w/techniques from [LS’15]
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Which Rings To Use?

I Our results don’t give any guidance: they work within a single ring R,
lower-bounding the hardness of R-LWE by R-Ideal-SIVP

I We have no nontrivial relations between lattice problems over
different rings. (Great open question!)

Progress on Ideal-SIVP

I Quantum poly-time exp(Õ(
√
n))-Ideal-SIVP in prime-power

cyclotomics (modulo heuristics) [CGS’14,BS’16,CDPR’16,CDW’17]

I Quite far from the (quasi-)poly(n) factors typically used for crypto

I Doesn’t apply to R-LWE or NTRU (unknown if R-LWE ≤ Ideal-SIVP)

Options
I Keep using R-LWE over cyclotomics

I Use R-LWE over (slower) rings like Z[X]/(Xp −X − 1) [BCLvV’16]

I Use ‘higher rank’ problem Module-LWE over cyclotomics/others
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Overview of LWE Reduction

I Theorem: quantumly, (n/α)-SIVP ≤ decision-LWEq,α ∀ q ≥
√
n/α

I Reduction strategy: ‘play with’ α, detect when it decreases.

Suppose O solves decision-LWEq,α with non-negl advantage. Define

p(β) = Pr[O accepts on LWEq,exp(β) samples].
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I Reduction strategy: ‘play with’ α, detect when it decreases.

Suppose O solves decision-LWEq,α with non-negl advantage. Define

p(β) = Pr[O accepts on LWEq,exp(β) samples].

Key Properties

1 p(β) is ‘smooth’ (Lipschitz) because Dσ, Dτ are ( τσ − 1)-close.

2 For all β ≥ log n, p(β) ≈ p(∞) = Pr[O accepts on uniform samples],
because huge Gaussian error is near-uniform mod qZ.

3 p(logα)− p(∞) is noticeable, so there is a noticeable change in p
somewhere between logα and log n.
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Exploiting the Oracle

I Theorem: quantumly, (n/α)-SIVP ≤ decision-LWEq,α ∀ q ≥
√
n/α

I Classical part of [Regev’05] reduction:

t

BDDL∗ , dist d

+

DL,r samples

=⇒
LWEq,α samples

α = dr/q
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I Classical part of [Regev’05] reduction:

t

BDDL∗ , dist d

+
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=⇒
LWEq,α samples

α = dr/q

(DL,r samples come from previous iteration, quantumly.
They’re eventually narrow enough to solve SIVP on L.)
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Exploiting the Oracle

I Theorem: quantumly, (n/α)-SIVP ≤ decision-LWEq,α ∀ q ≥
√
n/α

I Classical part of [Regev’05] reduction:

t
t′

BDDL∗ , dist d

+

DL,r samples

=⇒
LWEq,α samples

α = dr/q

I Idea: perturb t, use O to check
whether we’re closer to L∗ by
how α = dr/q changes.

We get a ‘suffix’ of p(·). p∞
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Extending to the Ring Setting

I The LWE proof relies on 1-parameter BDD distance d ⇔ error rate α

I R-LWE proof has n-parameter BDD offset e ⇔ params α = (αi).
Gaussian error rate of αi in the ith dimension.

I Classical part of [LPR’10] reduction:

t

BDDI∗ , offset e

+

DI,r samples

=⇒
R-LWEq,α

samples

αi = |ei|ri/q

I Now oracle’s acceptance prob. is p(β), mapping (R+)n → [0, 1].
F limβi→∞ p(β) = p(∞): huge error in one dim is ‘smooth’ mod R∨.

F Problem: Reduction never∗ produces spherical error (all αi equal),
so it’s hard to get anything useful from O.

F Solution from [LPR’10]: randomize the αi: increase by n1/4 factor.

F Improvement: randomization increases αi by only ω(1) factor.
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F limβi→∞ p(β) = p(∞): huge error in one dim is ‘smooth’ mod R∨.

F Problem: Reduction never∗ produces spherical error (all αi equal),
so it’s hard to get anything useful from O.

F Solution from [LPR’10]: randomize the αi: increase by n1/4 factor.

F Improvement: randomization increases αi by only ω(1) factor.
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Final Thoughts and Open Problems

I decision-R-LWEq,α is worst-case hard for any R = OK , modulus q

I decision-LWEq,α is hard for any q; approx factor independent of q

Open Questions

1 Hardness for spherical error:

F Avoid n1/4 degradation in the αi rates?

F Support unbounded samples?

2 Hardness for smaller error with fewer samples? (Extend [MP’13]?)

3 Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?

4 Evidence for/against Ring-LWE ≤ Ideal-SIVP?

5 Classical reduction matching params of quantum reductions?
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