Pseudorandom Generators from One-Way
Functions via Computational Entropy

Salil Vadhan
Harvard University

DIMACS Workshop on Complexity of
Cryptographic Primitives and Assumptions
June 9, 2017

PRGs from OWFs

Thm [Hastad-Impagliazzo-Levin-Luby " 90]:

OWF £:{0,1}" - {0,1}"

|

PRG G7:{0,1}° - {0,1}°*1

Efficiency measures:
= Seed length: s = 0(n%) [HILL89], s = O(n®) [HO6].
= # queries to f: g = 0(n®) [HILL89], s = O(n”) [HO6].

[seed = g independent evaluation pts + hash functions]

PRGs from OWFs

Thm [Haitner-Reingold-Vadhan 10, Vadhan-Zheng 11]:

OWF £:{0,1}" - {0,1}"

|

PRG G7:{0,1}° - {0,1}°*1

Efficiency measures:
= Seed length: s = O0(n*) [HRV10], s = O0(n3) [VZ11].

= # queries to f: g = O(n®) [HRV10,VZ11].

Outline

OWFs & Cryptography

Notions of pseudoentropy
OWPs = PRGs

OWFs = PRGs

Open problems

Inaccessible Entropy (time permitting)

One-Way Functions [DH76]

easy

G para_J009)

= Candidate: f(x,y) = x-y

Formally, a OWF is f : {O,1} — {0,1}" s.t.
= f poly-time computable
= Y poly-time A
PrlA(f(X))e F1(f(X))] = 1/n“D for X<-{0,1}

OWFs & Cryptography

secure protocols & applications

_—

[S~

private-key [[acs] |zero-knowledge digital statistical ZK
encryption proofs signatures arguments
1 / lcmwss)]
pseudorandom statistically binding
functions commitments [NY89] [BCC86]
[GGMg6]/ [N89]
pseudorandom target-collision-resistant statistically hiding
generators hash functions (UOWHFs) commitments
R90
[HILL9O] [RS0] [HNORVO07]

one-way functions

OWFs & Cryptography

secure protocols & applications

—

[S~

private-key zero-knowledge digital statistical ZK
encryption proofs signatures arguments
1 / lcMwss)]
pseudorandom statistically binding
functions commitments [NY89] [BCC86]

[GGMg6] [M’w]

pseudorandom
generators

[HILL9O]

target-collision-resistan

=

hash functions (UOWHFs

statistically hidin

— ding
commitments %

[RO0]

one-way functlons

[HNORVO07]

Computational Entropy
[Y82,HILL90,BSWO03]

Question: How can we use the “raw hardness”
of a OWF to build useful crypto primitives?

Answer [HILL90,R90,HRVWO009,...]:

= Every crypto primitive amounts to some
form of “computational entropy”.

= One-way functions already have a little bit of
“computational entropy”.

Outline

OWFs & Cryptography

Notions of pseudoentropy

OWPs = PRGs
OWFs = PRGs
Open problems

Inaccessible Entropy (time permitting)

Entropy

Def: The Shannon entropy of r.v. X is
H(X) = E,. «[log(1/Pr[X=x])]

= H(X) = "Bits of randomness in X (on avg)”
" 0 < H(X) < log Supp(X)|

/ \

X concentrated X uniform on
on single point Supp(X)

= Conditional Entropy: H(X|Z) = E,. ,[H(X|,_,)]

(Conditional) Min-Entropy

= Min-Entropy:

. 1 1
Heo (X) B mxln log (Pr[X:x])_log (max Pr[X:x])

X

= Average Min-Entropy:
[Dodis-Ostrovsky-Reyzin-Smith ~04]

Ho(X|Z) = log(!)
E, . [mxax Pr[X =x|Z = Z]]

Average Min-Entropy [DORS04]

He, (X]2) = log(:)
E,_, [m;lx Pr|X = x|Z = Z]]

Properties:

= Fquals “guessing entropy":
- He (X]Z) = log(-)

max Pr[A(Z)=X]

= Supports randomness extraction:
- (Ext(X;R),R,Z) = (Up, R, Z)
- With m as large as H,(X|Z) — 2log(1/¢) — 0(1)

(HILL) Pseudoentropy

Def [HILL90]: X has pseudoentropy > k iff
there exists a random variable Y s.t.

1.Y =X
2. H(YY) > k

Interesting when k > H(X), i.e.
Pseudoentropy > Real Entropy,

e.g. X = output of a PRG

(HILL) Pseudoentropy variants

Def [Hsiao-Lu-Reyzin ~07]:
X has pseudoentropy > k given Z iff
3 a random variable Y s.t.

1. (Y,Z) =° (X,2)
2. HY|Z) > k

Pseudo-min-entropy: require H,(Y|Z) > k.

= Supports randomness extraction:
if Ext is efficiently computable, then
- (Ext(X;R),R,Z) =€ (U,,,R,7)
- With m as large as k — 2log(1/¢) — 0(1)

Outline

OWFs & Cryptography

Notions of pseudoentropy

OWPs = PRGs

OWFs = PRGs
Open problems

Inaccessible Entropy (time permitting)

OWPs = PRGs

Thm [Blum-Micali 82, Yao 82, Goldreich-Levin " 89]:

One-way Permutation f:{0,1}" - {0,1}"

|

PRG G7:{0,1}° - {0,1}°*1

Efficiency measures:
= Seed length: s = 0(n) [GL89]
= # queries to f: g = 1 [GL89].

OWPs = PRGs

Thm [Blum-Micali 82, Yao 82, Goldreich-Levin " 89]:

One-way Permutation f:{0,1}" - {0,1}"

|

PRG G7:{0,1}° - {0,1}°*1

Efficiency measures:
= Seed length: s = 0(n) [GL89]
= # queries to f: g = 1 [GL89].

OWPs = PRGs

Modern interpretation of proof:

= For X « {0,1}", given f(X), X has w(logn)
guessing pseudoentropy [Hsiao-Lu-Reyzin “07]

V poly-time A, Pr[A(f(X))=X] < 1/n«D)
Note: ordinary pseudoentropy is negligible!

= Supports randomness extraction: if Ext is a
“reconstructive extractor” then:
- (Ext(X;R),R,Z) =€ (U,,,R,2)
- With m as large as k — 2log(1/¢) — 0(1).
[Goldreich-Levin 89, Trevisan 99, Ta-Shma-Zuckerman 01, ...]

Guessing pseudoentropy
vs. HILL pseudoentropy

Can be very different in general (as we saw),
but are equivalent for short random variables:

Thm [Impagliazzo " 95,..., VZ 12, SGP " 15]:
Let (X,Z) € {0,1}00ogn) {0 1}n

Guessing pseudoentropy of X given Z
> k
)
Pseudo-min-entropy of X given Z
IS > k

Guessing pseudoentropy
vs. HILL pseudoentropy

Can be very different in general (as we saw),
but are equivalent for short random variables:

Thm [Impagliazzo " 95,..., VZ 12, SGP " 15]:
Let (X,Z) € {0,1}00ogn) {0 1}n

Guessing pseudoentropy of X given Z
>k + negl(n)
)
Pseudo-min-entropy of X given Z
IS > k

Guessing pseudoentropy
vs. HILL pseudoentropy

Can be very different in general (as we saw),
but are equivalent for short random variables:

Thm [Impagliazzo " 95,..., VZ 12, SGP " 15]:
Let (X,Z) € {0,1}00ogn) {0 1}n

Guessing pseudoentropy of X given Z
> k
)
Pseudo-min-entropy of X given Z
IS > k

Outline

OWFs & Cryptography
Notions of pseudoentropy
OWPs = PRGs

OWFs = PRGs

Open problems

Inaccessible Entropy (time permitting)

PRGs from OWFs

Thm [Haitner-Reingold-Vadhan 10, Vadhan-Zheng 11]:

OWF £:{0,1}" - {0,1}"

|

PRG G7:{0,1}° - {0,1}°*1

Efficiency measures:
= Seed length: s = O0(n*) [HRV10], s = O0(n3) [VZ11].

= # Queries to f: g = 0(n®) [HRV10,VZ11].

Pseudoentropy in a OWF

= Still true: For X « {0,1}", given f(X), X has
w(logn) guessing pseudoentropy:

V poly-time A, Pr[A(f(X))=X] < 1/n«)

= But this may be for trivial information-
theoretic reasons, e.g. f(x)=first half of x.

= How to capture gap between information-
theoretic and computational hardness in X

given f(X)?

Pseudoentropy in a OWF

Lemma [vz11]: For X « {0,1}", given f(X), X has
w(logn) sampling relative entropy:

for every probabilistic poly-time A
D((f(X),X) || (f(X),A(f(X))) = w(logn).

[D = relative entropy/KL Divergence]

cf. distributional one-way functions
[Impagliazzo-Luby " 89]: D— statistical distance

Pseudoentropy in a OWF

Lemma [vz11]: For X « {0,1}", given f(X), X has
w(logn) sampling relative entropy:

for every probabilistic poly-time A
D((f(X),X) || (f(X),A(f(X))) = w(logn).

Proof: Applying test T(y,x) = {1 i3 = f_(x)
0 otherwise

D((f(X),X) || (FOX),A(f(X)))

> D(Bernoulli(1) || Bernoulli(n=®®))

= log(1/n~*M) = w(logn).

Sampling Relative Entropy vs.
Pseudoentropy

Thm [VZ11]: Let (X,Z) € {0,1}00ogn) s {0 1}n.

X has sampling relative entropy > k given Z,

i.e. for every probabilistic poly-time A
D((Z,X)||(Z,A(Z)) > k

)
The pseudoentropy of X given Z is > H(X|Z)+k

Problems & solutions:
= QOur X is long — break into small pieces

= Can’t extract from Shannon entropy — repetitions

Next-bit Pseudoentropy

Thm [HRV10,VZ11]: (f(X),X;,...,X,) has
“next-bit pseudoentropy” > n+w(log n).

Note: (f(X),X) easily distinguishable from
every random variable of entropy > n.

Next-bit pseudoentropy: 3 (Y,,...,Y,) s.t.
- (f(X),X,...,X) =€ (f(X),X;,...,X.;,Y.)

- H(X))+2 H(Y,[f(X),X;,...,X:;) = n+w(log n).
cf. next-bit unpredictability [Blum-Micali * 82]

Next-Bit Pseudoentropy from OWF:
Proof Sketch

f a one-way function

|

Given f(X), X has sampling relative entropy w(logn)

|

Given (f(X),X;,...,.X)), X,
has sampling relative entropy w(logn)/n

Ithm

Given (f(X),X;,...,X)), X,; has
pseudoentropy>entropy+w(log n)/n

l

(f(X),X;,...,X,) has next-bit pseudoentropy > n+w(log n)

PRGs from OWF: 1st attempt

‘ f(X(l))’X(l)

f(X(Z)),X(Z)

f(X(t))’X(t)

l .- extraction ---

—

=— t=0(n?) repetitions

— seed length 0(n3)

= t. (n+log n) - O(\/t- n) > t- n
pseudorandom bits

Difficulty: how much to extract from each column?

Unknown Entropy Thresholds

= Problem: although we know
H(f(X))+2; H(Y [f(X),X;,...,X..;) = n + w(logn),
we don’t know individual terms.

= Solution: “entropy equalization”
[Haitner-Reingold-Vadhan-Wee “09, HRV 10]

- costs a factor O(n) in # queries to OWF and in
seed length.

- cost in seed length can be eliminated with
adaptive queries to OWF [VZ11].

Unknown Entropy Thresholds
in Regular OWF

= Problem: Although we know

Ho (f(X)) + Hoo (X|f (X)) = 7,

we don’t know the individual terms.

= Solution: “the randomized iterate”
[Goldreich-Krawczyk-Luby " 88, Haitner-Harnik-Reingold " 07]:

- Costs factor of 0(n) in adaptive queries to OWF
- Costs a factor of O(logn) in seed length

- Cost in #queries is necessary for black-box
reductions [Holenstein-Sinha " 12]

PRGs from OWFs

Thm [Haitner-Reingold-Vadhan 10, Vadhan-Zheng 11]:

OWF £:{0,1}" - {0,1}"

|

PRG G7:{0,1}° - {0,1}°*1

Efficiency measures:
= Seed length: s = O0(n*) [HRV10], s = O0(n3) [VZ11].

= # queries to f: g = O(n®) [HRV10,VZ11].

Outline

OWFs & Cryptography
Notions of pseudoentropy
OWPs = PRGs

OWFs = PRGs

Open problems

Inaccessible Entropy (time permitting)

PRGs from OWFs

= # queries to f: g = 0(n?) x 0(n) [HRV10,VZ11].

Shannon entropy | | Unknown entropy thresholds
to min-entropy (necessary by [HS12])

= Seed length: s = 0(q - n) [HRV10], s = O(n?) - n [VZ11].

~

Non-adaptive queries Adaptive queries

PRGs from OWFs

= # queries to f: g = 0(n?) x 0(n) [HRV10,VZ11].

_— o~

Shannon entropy | | Unknown entropy thresholds
to min-entropy (necessary by [HS])

= Seed length: s = 0(q - n) [HRV10], s = O(n?) - n [VZ11].

~

Non-adaptive queries Adaptive queries

Open Problems:
= Find a better construction or better black-box lower bounds.

= There could be a construction with 0(n) seed length and
#queries.

PRGs from OWFs

= # queries to 1 g = 0(n?) x 0(n) [HRVIO,VZII].

_— o~

Shannon entropy | | Unknown entropy thresholds
to min-entropy (necessary by [HS12])

= Seed length: s = 0(q -) [HRV10], s = 0(n?) - n [VZ11].

~

Non-adaptive queries Adaptive queries

Why do we obtain Shannon entropy?
= Separating pseudoentropy of f(X) and X.
= Breaking X into blocks.

Converting Shannon Entropy
to Min-Entropy

Thm [Goldreich-Sahai-vadhan “99]: There is an oracle
algorithm A©):{0,1}° - {0,1}™ making q = 0(n?)
(independent) queries to an input oracle

X :{0,1}" - {0,1}" such that:

1. HX(U,)) = g + 1 = A*(Us) negl(n)—close to U,,

2. HX(U,)) < % = |Support(4%¥ (U,))| < negl(n) - 2™.

Q: superlinear lower bounds on g or s?

OWFs & Cryptography

secure protocols & applications

_—

[S~

private-key [[acs] |zero-knowledge digital statistical ZK
encryption proofs signatures arguments
1 / lcMwss)]
pseudorandom statistically binding
functions commitments [NY89] [BCC86]
[GGM86]] IN8O]
pseudorandom target-collision-resistant statistically hiding
generators hash functions (UOWHFs) commitments
[HRV10, next-bit - 1‘ e [HRVWO0O
VZ11] pseudoentropy inaccessible entropy R O’]

t -

one-way functions

Outline

OWFs & Cryptography
Notions of pseudoentropy
OWPs = PRGs

OWFs = PRGs

Open problems

Inaccessible Entropy (time permitting)

Inaccessible Entropy
[HRVWO09,HHRVW10]

= Example: if h: {0,1}"— {0,1}"% is collision-
resistant and X« {0,1}", then
- H(X|h(X)) > k, but

- To an efficient algorithm, once it produces h(X), X is
determined = “accessible entropy” O.

- Accessible entropy <« Real Entropy!

= Thm [HRVWO09]: f a OWF = (f(X),,...,f(X),,X) has
“next-bit accessible entropy” n-w(log n).
- cf. (f(X),X,,...,X,) next-bit pseudoentropy n+w(log n).

OWF = Statistically Hiding Commitments
[Haitner-Reingold-Vadhan-Wee " 09]

i thm

Z=(f(U_),U,) w/next-bit accessible entropy < n-w(log n)

l entropy equalization + repetitions

/Z’ with next-block pseudo-min-entropy < |seed|-poly(n)

l (interactive) hashing [DHRSO07]
+UOWHFs [NY89,Rom90]

‘m-phase” commitment
cut & choose
+ parallel repetition

statistically hiding commitment

OWF = Pseudorandom Generators
[Haitner-Reingold-Vadhan " 10]

OWF

|

Z=(f(U,),U,) with next-bit pseudoentropy > n+w(log n)

l entropy equalization + repetitions

/’ with next-block pseudo-min-entropy > |seed|+poly(n)

l hashing/extraction

PRG
l length expansion

+ random shift [Naor91]

statistically binding commitment

Conclusion

Complexity-based cryptography is possible
because of gaps between real &
computational entropy.

‘Secrecy”
pseudoentropy > real entropy

“Unforgeability”
accessible entropy < real entropy

Research Directions

= Formally unify inaccessible entropy and
pseudoentropy.

* From OWF on n bits, can we construct:
- PRGs with 0(n) seed and/or # queries to f?

- Statistically hiding commitments with
O(n) communication and/or # queries to f?
(n.b. ®(n) optimal for round complexity
[Haitner-Harnik-Reingold-Segev 07, HRVW "09])

= More applications of inaccessible entropy in
crypto or complexity (or mathematics?)

