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Examples:
» Run proprietary classifier xon private data y
» Evaluate statistics on combined medical records x & y
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Example:
> y = genetic database
» x = DNA markers

» f(x,y) = diagnosis

= in general, security demands that all of the data is touched
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2 ® General-purpose 2PC scales with size of circuit representa-
o tion, which is always at least linear in input size.
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In this talk:

1 ® |nstead of circuits, use a representation that can actually be
@ sublinearin size.

® Protocol must “touch every bit”, but amortize this cost across
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RAM program need not touch every bit of memory.
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Basic outline:
» Imagine both parties’ inputs stored in large memory
> Imagine they could evaluate CPU-next-instruction function
» Use (traditional) 2PC protocol to realize CPU-next-instruction

Cost = (size of next-instruction function) X (number of instructions)
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Internal state is public
— Secret-share the state! v
Calvin sees all of the memory

= Encrypt the memory, augment CPU-next-instruction with
encryption/decryption. v

Memory access pattern (read /1, write /s, . . .) public!

?2? Calvin must learn these so he knows what to do!
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RAM-2PC paradigm [GKKKMRV12]

“Use traditional 2PC to repeatedly evaluate next-instruction circuit of an
oblivious RAM program.”
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If original RAM program is sublinear, ORAM version is sublinear too!

. only after memory is initialized into proper data structure!
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Amortizing

ORAM memory can be reused indefinitely

touch —— ORAM __z
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Summarizing

RAM-2PC paradigm [GKKKMRV12]

“Use traditional 2PC to repeatedly evaluate next-instruction circuit of an
oblivious RAM program.”

» Expensive O(N) initialization phase

» Subsequent computations cost 5( T), where 7= ORAM running time.

> [GKKKMRV12]: semi-honest security
» [AfsharHuMohasselR15]: malicious security

» [HuMohasselR15]: malicious security, one-sided privacy
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Our approach wemmmesess

Idea: represent state/memory [re]using garbled encodings!

Wo, W1

~

» Privacy: Given Wp, can’t guess b

» Authenticity: Given Wp, can’t guess Wj_p

Benefits:

» CPU next-instruction circuit doesn’t need to encrypt/decrypt (garbled
encoding already hides the information)

» CPU next-instruction circuit doesn’ need to secret-share CPU state
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Reusing garbled encodings

t—1

t+1

garbled CPU

state

ldata i

garbled CPU

v

,l,data oMt

state

garbled CPU

(write, addr)

data

(read, addr)

Must know ORAM access
pattern to choose
appropriate garbled encoding
for next circuit.

(Contrast with naively
converting ORAM to circuit)
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» Memory and state encoded with garbled encoding.

» Susie garbles circuit with input encoding matching previous output
encoding

» Only valid input Calvin can provide is previous circuit’s output.
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check-threads: receiver gets both labels per wire = check correct behavior
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eval-threads: receiver gets one garbled encoding = learns only prescribed outpu
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Setting:

» Mis Calvin's secret input; expensive ORAM initialization commits him
toM

» Repeatedly run public ORAM program on M
» Example: M= user database; check for membership

In this case we can avoid cut & choose, avoid high interaction!
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ORAM access pattern
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Calvin knows all inputs, can run ORAM in his head

v

Knowing ORAM access pattern, can convert to small circuit

v

Calvin can evaluate garbled circuit

» Susie can open garbled circuit (no secrets to hide!)

v

Calvin opens committed output knowing GC was correctly generated
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thanks!



