Secure Computation with Sublinear Cost

Mike Rosulek

Collaborators: Arash Afshar / Zhangxiang Hu / Payman Mohassel

Secure 2-party computation

Secure 2-party computation

Secure 2-party computation

Secure 2-party computation

Secure 2-party computation

NP
ViV

fix,y)

Examples:
» Run proprietary classifier xon private data y
» Evaluate statistics on combined medical records x & y

> ...

Fundamental Limits

Fundamental Limits

protocol never touches these - = <|- _
\

\
X N AV
= ? Y, -
A S 1y &
] L4 =
A [N
L4 “.

fix,y)

Fundamental Limits

f(x, y) doesn’t depend on these bits of y - = < |
\
\

X & SN\
y] L4 oL -
A [
y) L4
A [N
L4

fix,y)

Example:
> y = genetic database
» x = DNA markers

» f(x,y) = diagnosis

Fundamental Limits

f(x,) doesn’t depend on these bits of y - = =
\
\

X & SN\
) L4 £ I-
€ 5 5
) L4
A [N
L4

fix,y)

Example:
> y = genetic database
» x = DNA markers

» f(x,y) = diagnosis

= in general, security demands that all of the data is touched

Limits of Standard Techniques

Limits of Standard Techniques

EEEEEEESEES SESEEEEEEEEEEEEEEE

Limits of Standard Techniques

EEEEEEESEES SESEEEEEEEEEEEEEEN

“to securely evaluate f,
first express f as a boolean circuit,
then...”

Limits of Standard Techniques

[B A O
ENEEEEEEEEEEEEEEEEEEEEEEEEEEEE

“to securely evaluate f,
first express f as a boolean circuit,
then...”

What We're Up Against

1 ® Security requires protocol cost at least linear in size of in-
® puts (in general!)

What We're Up Against

1 ® Security requires protocol cost at least linear in size of in-
@ puts (in general!)

2 ® General-purpose 2PC scales with size of circuit representa-
o tion, which is always at least linear in input size.

In this talk:

1 ® |nstead of circuits, use a representation that can actually be
@ sublinearin size.

In this talk:

1 ® |nstead of circuits, use a representation that can actually be
@ sublinearin size.

® Protocol must “touch every bit”, but amortize this cost across

RAM programs

- “

RAM programs

M[e1] ’

cpu

RAM programs

Vv

read, {1 -
Mle1]

read, /o

AN

cpu

4

M[£2]

RAM programs

read, /1
M[é1]

W

AN

read, o
M[€2] memory

cpu

02

AN

write, 3, x

02

M[fg] — X

small internal state

ok

AN

RAM programs

read, /1
M[Zﬂ

W

AN

read, {2
M[t2] memory

cpu

02

AN

write, 3, x

02

M[fg] — X

ok

AN

RAM program need not touch every bit of memory.

Idea: securely evaluate RAM

Idea: securely evaluate RAM

CPU state CPU state -

cpu ¢ 5

Basic outline:
» Imagine both parties’ inputs stored in large memory

> Imagine they could evaluate CPU-next-instruction function

Idea: securely evaluate RAM

cpu ¢

L

new state, read £

Basic outline:
» Imagine both parties’ inputs stored in large memory

> Imagine they could evaluate CPU-next-instruction function

Idea: securely evaluate RAM

newstate new state, M[{] -

cpu ¢ 5

Basic outline:
» Imagine both parties’ inputs stored in large memory

> Imagine they could evaluate CPU-next-instruction function

Idea: securely evaluate RAM

cpu ¢ 5

Basic outline:
» Imagine both parties’ inputs stored in large memory
> Imagine they could evaluate CPU-next-instruction function

» Use (traditional) 2PC protocol to realize CPU-next-instruction

Idea: securely evaluate RAM

S W/
y] L4 =",
A = Iy <
] s E
A [N

?

Basic outline:
» Imagine both parties’ inputs stored in large memory
> Imagine they could evaluate CPU-next-instruction function

» Use (traditional) 2PC protocol to realize CPU-next-instruction

Idea: securely evaluate RAM

S W/
y] L4 =",
A = Iy <
] s E
A [N

?

Basic outline:
» Imagine both parties’ inputs stored in large memory
> Imagine they could evaluate CPU-next-instruction function
» Use (traditional) 2PC protocol to realize CPU-next-instruction

Cost = (size of next-instruction function) X (number of instructions)

What can go wrong?

S

What can go wrong?

CPU state CPU state

— —

N

new state

Internal state is public

What can go wrong?

share of state share of state

— . —
— PN =
— —

share of new state share of new state

Internal state is public

— Secret-share the state! v

What can go wrong?

— . —
— PN =
— —

Internal state is public
— Secret-share the state! v

Calvin sees all of the memory

What can go wrong?

|
l
%

A

—— E(pu)— ¢ \

Internal state is public
— Secret-share the state! v
Calvin sees all of the memory

= Encrypt the memory, augment CPU-next-instruction with
encryption/decryption. v

What can go wrong?

|
l
%

A

—— E(pu)— ¢ \

read £

Internal state is public
— Secret-share the state! v
Calvin sees all of the memory

= Encrypt the memory, augment CPU-next-instruction with
encryption/decryption. v

Memory access pattern (read /1, write /s, . . .) public!

What can go wrong?

— Ecpu)— ¢
—— l —
read ¢

Internal state is public
— Secret-share the state! v
Calvin sees all of the memory

= Encrypt the memory, augment CPU-next-instruction with
encryption/decryption. v

Memory access pattern (read /1, write /s, . . .) public!

?2? Calvin must learn these so he knows what to do!

Oblivious RAM

Oblivious RAM (ORAM) = memory access pattern leaks nothing about
inputs/outputs/state [GoldreichOstrosvky96]

» Can convert any RAM program to ORAM, polylog overhead in runtime
& memory [ShiChanStefanovLi11,]

Oblivious RAM

Oblivious RAM (ORAM) = memory access pattern leaks nothing about
inputs/outputs/state [GoldreichOstrosvky96]

» Can convert any RAM program to ORAM, polylog overhead in runtime
& memory [ShiChanStefanovLi11,]

Il
1

obliv cpu

RAM-2PC paradigm [GKKKMRV12]

“Use traditional 2PC to repeatedly evaluate next-instruction circuit of an
oblivious RAM program.”

Wait, what?

If original RAM program is sublinear, ORAM version is sublinear too!

obliv cpu

[l
1l

Wait, what?

If original RAM program is sublinear, ORAM version is sublinear too!

. only after memory is initialized into proper data structure!

obliv cpu

[l
1l

Wait, what?

If original RAM program is sublinear, ORAM version is sublinear too!

. only after memory is initialized into proper data structure!

ORAM
encode

il

il

\m— obliv cpu

Wait, what?

If original RAM program is sublinear, ORAM version is sublinear too!

. only after memory is initialized into proper data structure!

touch —— ORAM — ff“\“a
every D e— — .
bit £— encode —
— —_—
sublinear — obliv cpu p——>
— —

Amortizing

ORAM memory can be reused indefinitely

touch —— ORAM __z
every >
bit £ encode —
sublinear { =——— obliv cpu —=

sublinear{ — oblivcpu ——

Summarizing

RAM-2PC paradigm [GKKKMRV12]

“Use traditional 2PC to repeatedly evaluate next-instruction circuit of an
oblivious RAM program.”

» Expensive O(N) initialization phase

» Subsequent computations cost 5(T), where 7= ORAM running time.

> [GKKKMRV12]: semi-honest security
» [AfsharHuMohasselR15]: malicious security

» [HuMohasselR15]: malicious security, one-sided privacy

Garbled circuit framework ws.s

—D
i D_@ﬁ

Garbled circuit framework w.s
— 14

_ =

00|0 00|0 0 0|0 00|0 00|0
011 011 011 011 011
10(0 101 10(0 10(0 101
11/0 11(0 11(0 110 111

Garbled circuit framework .

M_D Eo, By

By, Bi \D Fo, F1

lo, h

Ho, H1

Co, C1 Go, G

D07D1
000 000 000 000 000
011 011 011 011 011
1 0|0 10(1 1 0[0 10(0 10|1
11|0 11|0 11/0 11/0 111

Garbling a circuit:

» Pick random labels Wy, W; on each wire

Garbled circuit framework .

M_D Eo, By

By, Bi \D Fo, F1

Co, C1 Go, G

lo, h

Ho, H1

D07 Dy

Aog By |Eo Ao By |Fo Co Do|Go Fo Go|Ho Eo Hollo
Ao Bi|Ey Ao Bi|F1 C D1Gy Fo G1|H1 Eq Hi|h
A1 By|Eo A1 By|F1 C1 Do |Go F1 Go|Ho Ey Ho|h
A1 B1|E A1 Bi|Fo G D1|Go F1 G1|Ho Ey Hi|h

Garbling a circuit:

» Pick random labels Wy, W; on each wire

Garbled circuit framework .

Ao, AL Eo, By

G, G
D07 Dy
EncAmBo (EO) EncAmBo (FO) EnCC07D0(GO) EncF07GO(H0) Encfo,"'/o (/0)
Encay, e, (E1) | [ENCag 8, (F1)| |ENCcy 0, (G1) | |ENCry 6, (H1) | {ENCeymy (R)
Enca, 8, (Eo) | |[ENCa, 8, (F1)| |ENCc;,0,(Go) || ENCAy Gy (Ho) | |ENCEy mo (h)
EI‘ICA1 By (E()) EnCAhBl (FO) E[‘\CCI"Dl (G()) EnthGl (H()) EnCELH1 (Il)

Garbling a circuit:
» Pick random labels Wy, W; on each wire

> “Encrypt” truth table of each gate

Garbled circuit framework .

Ao, Al

BO7BI \i >

E0> 3]

G, G
D07 Dy
EncAmBo (EO) EncAmBo (FO) EnCC07D0(GO) EncF07GO(H0) Encfo,"'/o (/0)
Encay, g, (E1) | |[ENCag 8, (F1) | |ENCcy 0, (G1) [{ENCRy 6, (H1) | {ENCey,m (R)
Enca, 8, (Eo) | |[ENCa, 8, (F1)||ENCc;,0,(Go) [|ENCry Gy (Ho) | {ENCEy mo (h)
EI‘ICA1 By (E()) EI'ICA1 By (FO) E[‘\C(_‘I’Dl (G()) EnthGl (H()) EnCELH1 (Il)

Garbling a circuit:
» Pick random labels Wy, W; on each wire
> “Encrypt” truth table of each gate

» Garbled circuit = all encrypted gates

Garbled circuit framework .

Al

8=

Co

Dy
EncAmBo (EO) EncAmBo (FO) EnCC07D0(GO) EncF07GO(H0) Encfo,"'/o (/0)
ENCag, 6, (E1) | |ENCaq 6, (F1) [{ENCey 0, (G1) | |ENCRy 6, (H1) [{ENCey,m ()
ENCay 5, (E0) [|ENCay 5, (F1) [{ENCey 0, (Co) || ENCry 6o (Ho) | |ENCE, o (1)
EI‘ICA1 By (E()) EI'ICA1 By (FO) EnC(_‘1 D1 (G()) EnthGl (H()) EnCELH1 (Il)

Garbling a circuit:
» Pick random labels Wy, W; on each wire
> “Encrypt” truth table of each gate
» Garbled circuit = all encrypted gates

» Garbled encoding = one label per wire

Garbled circuit framework .

D

8=

Co
Dy

Enc 750() EncAmBo (FO) EnCC07D0(GO) EncF07GO(H0) Encfo,"'/o (/0)

Enc. - (“)||Encay,s, (F1) [|ENcey 0, (G1) | |ENCry Gy (H1) | [ENCey iy (h)

EncAhBU(E(]) EncAl,Bo(Fl) EnCC1 o(0) EncFl,Go(HO) Enc51 o(ll)

Enca,,- (7)) [|Enca, .5, (Fo) | |ENCe, .p, (Go) [|ENC, ¢, (Ho) | |Encey 1y (H)

Garbling a circuit: Garbled evaluation:

» Pick random labels Wy, W; on each wire » Only one ciphertext per
» “Encrypt” truth table of each gate gate is decryptable

» Garbled circuit = all encrypted gates

» Garbled encoding = one label per wire

Garbled circuit framework .

1 :

2= > :

Co
Dy

Enc 750() Enc 730() EnCC07D0(GO) EncF07GO(H0) Encfo,"'/o (/0)

Enc) () Enc s () EncCo 1(1) EncF(hGl(Hl) Encfo, 1(/1)

EncAhBU(EO) Enca, Bo(Fl) Ence,, o(0) EncFl,Go(HO) Encg,, o(ll)

Enca,,- (7)) [|Enca,,- (7)) ||Ence, .p, (Go) [|ENCE, ¢, (Ho) | |EnCey 1y (H)

Garbling a circuit: Garbled evaluation:

» Pick random labels Wy, W; on each wire » Only one ciphertext per
» “Encrypt” truth table of each gate gate is decryptable
» Garbled circuit = all encrypted gates > Result of decryption =

» Garbled encoding = one label per wire telll el

Garbled circuit framework .

Al

D, :

2 =) > .
Co Gi
Dy

Enc 750() Enc 730() EnCC07 () EncF07GO(H0) Encfo,"'/o (/0)

Enc. - (“)f|Enc. . (©)]|Enccy,o, (G1) [{ENCry G, (H1) | {ENCey,m (h)

EncAhBU(EO) EncAl,Bo(Fl) Enc. | () EncFl,Go(HO) Encg, Ho(ll)

Enca,,- (7)) [|Enca,,- (7)) [|Enc: o, (C0) [|Encs, ¢, (Ho) | |Encey 1y (H)

Garbling a circuit: Garbled evaluation:

» Pick random labels Wy, W; on each wire » Only one ciphertext per
» “Encrypt” truth table of each gate gate is decryptable

» Garbled circuit = all encrypted gates

» Garbled encoding = one label per wire

» Result of decryption =
value on outgoing wire

Garbled circuit framework .

Al

D, :

b == > -
G Ho
0 G
Dy
Enc 750() Enc 730() EnCC07 () Enc , () Encfo,"'/o (/0)
Enc) () Enc s () EncCo,D1 (Gl) Enc ,G1 () Encfo, H1 (/1)
EncAhBU(EO) EncAl,Bo(Fl) Enc. | () Encg, () Encg, Ho(ll)
Enca,,- (7)) [|Enca,, - (70) [|Enc o, (C0) [|Encs, 6, (Ho)| |Encey 1y (H)
Garbling a circuit: Garbled evaluation:
» Pick random labels Wy, W; on each wire » Only one ciphertext per
» “Encrypt” truth table of each gate gate is decryptable

» Garbled circuit = all encrypted gates

» Garbled encoding = one label per wire

» Result of decryption =
value on outgoing wire

Garbled circuit framework .

Al

D, :

8>~
Ho

Co Gi
Dy

Enc 750() Enc 730() EnCC07 () Enc , () Encfo,"'/o (/)

Enc) () Enc s () EncCo,D1 (Gl) Enc 701() Ench ()

EncAhBu (EO) Ency, 5 (Fl) Enc. | () Encg, () Ho()

Enca,,- (7)) [|Enca,,- (7)) [|Enc. o, (C0) [|ENcs, ¢, (Ho)| |Enc. . (1))

Garbling a circuit: Garbled evaluation:

» Pick random labels Wy, W; on each wire » Only one ciphertext per
» “Encrypt” truth table of each gate gate is decryptable
» Garbled circuit = all encrypted gates > Result of decryption =
» Garbled encoding = one label per wire telll el

Garbled circuits for 2PC

Garbled circuits for 2PC

garbled circuit f

[4

L 2

Garbled circuits for 2PC

garbled circuit f

[{

X
g input (;
—_— OT N

wire labels

Garbled circuits for 2PC

garbled circuit f

[{

X
g input (;
—_— OT N

wire labels

[Ax]

What can go wrong? (II)

—_— — AW
— cpu — E, My
— _’ F
— S— .

What can go wrong? (II)

CPU state

Corrupt party can mess up computation by:

> Providing wrong (share of) CPU state

What can go wrong? (II)

Corrupt party can mess up computation by:

> Providing wrong (share of) CPU state

What can go wrong? (II)

Corrupt party can mess up computation by:
» Providing wrong (share of) CPU state

» Providing wrong memory contents

What can go wrong? (II)

Corrupt party can mess up computation by:
» Providing wrong (share of) CPU state

» Providing wrong memory contents

Our approach wemmmesess

Idea: represent state/memory [re]using garbled encodings!

Wo, W1

0 2

» Privacy: Given Wp, can’t guess b

> Authenticity: Given W, can't guess Wy _

Our approach wemmmesess

Idea: represent state/memory [re]using garbled encodings!

Wo, W1

~

» Privacy: Given Wp, can’t guess b

» Authenticity: Given Wp, can’t guess Wj_p

Benefits:

» CPU next-instruction circuit doesn’t need to encrypt/decrypt (garbled
encoding already hides the information)

» CPU next-instruction circuit doesn’ need to secret-share CPU state

Reusing garbled encodings

garbled CPU

Reusing garbled encodings

t—1 garbled CPU

state outl ldata out
——3% mem access

state inl ldata in

t garbled CPU

state outl ldata out
———————3 mem access

state inl ldata in

t+1 garbled CPU

Reusing garbled encodings

t—1 garbled CPU

ldata out
% mem access

state

v

ldata in

t garbled CPU

state outl ldata out
———————3 mem access

state inl ldata in

t+1 garbled CPU

Reusing garbled encodings

t—1 garbled CPU

ldata out
% mem access

state

v

ldata in

t garbled CPU

ldata out
———————3 mem access

state

ldata in

h\ 4

t+1 garbled CPU

Reusing garbled encodings

t—1 garbled CPU

ldata out
3 (write, addr)

state

ldata in

v

t garbled CPU

ldata out
—————3 (read, addr)

state

ldata in

h\ 4

t+1 garbled CPU

Reusing garbled encodings

t—1 garbled CPU

(write, addr)

state

,l,data i

t garbled CPU

v

data

,l,data oMt

(read, addr)

t+1 garbled CPU

Reusing garbled encodings

t—1

t+1

garbled CPU

state

ldata i

garbled CPU

v

,l,data oMt

state

garbled CPU

(write, addr)

data

(read, addr)

Must know ORAM access
pattern to choose
appropriate garbled encoding
for next circuit.

(Contrast with naively
converting ORAM to circuit)

OU. r app rO aCh [AfsharHuMohasselR15]

Our approach wemmmesess

garbled CPU circuit . -

? ZE\ /,(

[state]

» Memory and state encoded with garbled encoding.

» Susie garbles circuit with input encoding matching previous output
encoding

Our approach wemmmesess

garbled CPU circuit

Iy

é“

([state']), instr, [M' [€']])
<+ cPU([[state], [M4]])

[state]

» Memory and state encoded with garbled encoding.

» Susie garbles circuit with input encoding matching previous output
encoding

» Only valid input Calvin can provide is previous circuit’s output.

Our approach wemmmesess

garbled CPU circuit

Iy

é“

([state']), instr, [M' [€']])
<+ cPU([[state], [M4]])

[state]

» Memory and state encoded with garbled encoding.

» Susie garbles circuit with input encoding matching previous output
encoding

» Only valid input Calvin can provide is previous circuit’s output.

Our approach wemmmesess

garbled CPU circuit . N\!\

<
CPU instruction &

~
)
y
/
SS

[state]

» Memory and state encoded with garbled encoding.

» Susie garbles circuit with input encoding matching previous output
encoding

» Only valid input Calvin can provide is previous circuit’s output.

Malicious garbler

garbled CPU circuit . 4‘!\'\

CPU instruction i

N

Main challenge: malicious garbler generates invalid garbled circuits.

Malicious garbler

some other circuit R W

, _ some unauthorized info 2

A

Main challenge: malicious garbler generates invalid garbled circuits.

cut and choose

cut and choose

#2 #6
(check) (check)

cut and choose

#1 #2 #3 #4 #5 #6 #H7 #8 #9 #10
(eval) (check) (eval) (eval) (check) (check) (check) (eval) (check) (eval)

[60 = 69 [[[ed) [[« [ed) [l

sender generates garbled circuits, reusing wire labels within each thread

cut and choose

#4 #H7 #10
(eval) (check) (eval) (eval) (check) (check) (check) eval (check) (eval)

ac] [oc]

t+1 |ac] |ac] [ac] |ac] [ac]

sender generates garbled circuits, reusing wire labels within each thread

cut and choose

#1 #2 #3 #4 #5 #6 #H7 #8 #9 #10

(eval) (check) (eval) (eval) (check) (check) (check) (eval) (check) (eval)

| o OEREN

R R

CEPEPPPREPE

sender generates garbled circuits, reusing wire labels within each thread

cut and choose

#1 #4 #5 #6 #H7 #8 #9 #10
(eval) (check) (eval) (eval) (check) (check) check (eval) (check) (eval)

PEITTTRIET
me%ee%//'/'
PP HETY Y

check-threads: receiver gets both labels per wire = check correct behavior

cut and choose

#1 #4 #5 #6 #H7 #8 #9 #10
(eval) (check) (eval) (eval) (check) (check) check (eval) (check) (eval)

TEIIFER (T
me%eew//'/'
CPEY R

eval-threads: receiver gets one garbled encoding = learns only prescribed outpu

One-sided secrets

Setting:

» Mis Calvin's secret input; expensive ORAM initialization commits him
toM

» Repeatedly run public ORAM program on M

» Example: M= user database; check for membership

One-sided secrets

M

Y

Setting:

» Mis Calvin's secret input; expensive ORAM initialization commits him
toM

» Repeatedly run public ORAM program on M
» Example: M= user database; check for membership

In this case we can avoid cut & choose, avoid high interaction!

Avoiding cut and choose puwesers

, ORAMaccess pattern -
Y

» Calvin knows all inputs, can run ORAM in his head

Avoiding cut and choose puwesers

, ORAMaccess pattern -
Y

small garbled circuit for f . N\A/

? ¢ 5

» Calvin knows all inputs, can run ORAM in his head

» Knowing ORAM access pattern, can convert to small circuit

Avoiding cut and choose puwesers

, ORAMaccess pattern -
Y

small garbled circuit for f . N\,\/

? ¢ 5

commit to garbled output

IN

» Calvin knows all inputs, can run ORAM in his head
» Knowing ORAM access pattern, can convert to small circuit

» Calvin can evaluate garbled circuit

Avoiding cut and choose puwesers

, ORAMaccess pattern -
Y

small garbled circuit for f . N\,\/

N
s
IS

commit to garbled output

IN

open garbled circuit

L 2

v

Calvin knows all inputs, can run ORAM in his head

v

Knowing ORAM access pattern, can convert to small circuit

v

Calvin can evaluate garbled circuit

» Susie can open garbled circuit (no secrets to hide!)

Avoiding cut and choose e

ORAM access pattern

small garbled circuit for f

0 2

commit to garbled output

IN

open garbled circuit

L 2

open committed output

N

v

Calvin knows all inputs, can run ORAM in his head

v

Knowing ORAM access pattern, can convert to small circuit

v

Calvin can evaluate garbled circuit

» Susie can open garbled circuit (no secrets to hide!)

v

Calvin opens committed output knowing GC was correctly generated

Conclusion

RAM-based 2PC can provide sublinear cost in amortized sense, using
practical 2PC techniques

> [GKKKRV12] = general paradigm, semi-honest security

» [AHMR15] = malicious security

» [HMR15] = malicious security with one-sided secrets; no
cut-and-choose, constant rounds

Challenges:
> Expensive pre-processing (ORAM initialization): communication &
computation
» Applying pre-processing to multiple users?

» For which computations must we “touch every bit?”

Conclusion

RAM-based 2PC can provide sublinear cost in amortized sense, using
practical 2PC techniques

> [GKKKRV12] = general paradigm, semi-honest security

» [AHMR15] = malicious security

» [HMR15] = malicious security with one-sided secrets; no
cut-and-choose, constant rounds

Challenges:
> Expensive pre-processing (ORAM initialization): communication &
computation
» Applying pre-processing to multiple users?

» For which computations must we “touch every bit?”

thanks!

