The Privacy of
Secured
Computations

Adam Smith
Penn State

Crypto & Big Data

Workshop
December 15, 2015

‘-3 PennState
Y College of Engineering

/ﬁ

\n I |

“Relax — it can only
see metadata.”

Cartoon: N:-ISE TO SIGNAL

RobCottinghamcom



Big Data

Every <length of time>

your <household object>
generates <metric scale modifier>bytes of data

about you

* Everyone handles sensitive data
* Everyone delegates sensitive computations

Crypto &
Big data




Secured computations

* Modern crypto offers
powerful tools

» Zero-knowledge to
program obfuscation

* Broadly: specify outputs to reveal
> ... and outputs to keep secret

» Reveal only what is necessary

* Bright lines
» E.g., psychiatrist and patient
* Which computations should we secure!?

» Consider average salary in department
before and after professor X resigns

o 8,
» Today: settings where we must release C(‘\Q& .S
Ay

some data at the expense of others



Which computations should we secure?

* This is a social decision
> True, but...

* Technical community can offer
tools to reason about security
of secured computations

* This talk: privacy in statistical databases

* Where else can technical insights be valuable!?



Privacy In Statistical Databases

Individuals “Curator” Users
i- L1 Government, |
T9 ( queries researchers,
i . businesses
; answers
. > (or)
T Malicious
i adversary )

Large collections of personal information
* census data

national security data

medical/public health data

social networks

recommendation systems

trace data: search records, etc



Privacy In Statistical Databases

°* Two conflicting goals
» Utility: Users can extract “aggregate” statistics

» “Privacy”: Individual information stays hidden

°* How can we define these precisely?

» Variations on model studied in
» Statistics (“statistical disclosure control”)

 Data mining / database (“privacy-preserving data mining” *)

» Recently: Rigorous foundations & analysis



Privacy in Statistical Databases

(®* Why is this challenging? ?

»> A partial taxonomy of attacks

* Differential privacy

> “Aggregate” as insensitive to individual changes

* Connections to other areas



External Information

Individuals Server/agency Users Internet
T —
i— 1 , Government, o
o " ( 'querles ) researchers, +—>Socia
i . — A businesses network
. answers N (or) \O
Lny Malicious ther .
i adversary anonymized
data sets

* Users have external information sources

> Can’t assume we know the sources

Anonymous data (often) isn’t.



A partial taxonomy of attacks

* Reidentification attacks

> Based on external sources or other releases

* Reconstruction attacks

S PSS _ Alice
& Bob
NEBEEREE Charlie
& & Danielle
& 9P Erica

&1 & Frank

Identified NetFlix Data

» “Too many, too accurate” statistics ﬂ

allow data reconstruction

°* Membership tests

» Determine if specific person in data set
(when you already know much about them)

lllllllll
OOOOOOOOO
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* Correlation attacks

» Learn about me by learning
about population




Reidentification attack examEIe

[Narayanan, Shmatikov 2008]

> (9D oy & Alice
o> & Bob
ST & & &y | Charlie
& & & & Danielle
& & & & Erica
&1 & Frank
Anonymized Public, incomplete
NetFlix data IMDB data
&y < Alice
& Bob On average,
— 7 & Chaf’“e four movies
— o> N g %, ED::;e”e uniquely
& & Erank identify user

Identified NetFlix Data

Image credit: Arvind Narayanan



Other reidentification attacks

* ... based on external sources, e.g.

> Social networks

» Computer networks

. o o »
» Microtargeted advertising B A
o-“i* 87 4 z
o < * o
» Recommendation Systems ;‘Q,,:"%\:/x;, i S
._‘,_‘.r‘f; _:;’}A x *2@4:. <
. . Ao
» Genetic data [Yaniv’s talk] <" S
‘( q‘
é

... based on composition attacks

» Combining independent anonymized
releases

[Citations omitted]

% Hospital
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x HosEt)itaI /



Is the problem granularity?

* Examples so far: releasing individual information

» What if we release only “aggregate” information?

0O
O O O "o'
. . . . O “'
* Defining “aggregate” is delicate AT e
-1° O
. “‘ ‘ .
» E.g. support vector machine output .- R

reveals individual data points

* Statistics may together encode data

> Reconstruction attacks:
Too many, “too accurate” stats
= reconstruct the data

» Robust even to fairly significant noise



Reconstruction Attack Example inur nissim 031

* Data set: d “public” attributes, | “sensitive”

R

» reconstruction :

> >

_ I

people {| |a; y release

Y attributes
* Suppose release reveals correlations between
attributes
» Assume one can learn {(a;, y) + error

> If error = 0(y/n) and q; uniformly random and d > 4n,
then one reconstruct n — o(n) entries of y

°* Too many, “too accurate” stats = reconstruct data

» Cannot release everything everyone would want to know



Reconstruction attacks as linear encoding [pmt7,...]

* Data set: d “public” attributes per person, | “sensitive”

n

>

release \a reconstruction
people ai y ) y

7 =
d+ 1| attributes m

* |dea: view statistics as noisy linear encoding My + e

2 X a;
M

* Reconstruction depends on geometry of matrix M

» Mathematics related to “compressed sensing”

R




Membership Test Attacks

* [Homer et al. (2008)] S“ PRSI | e
Exact high-dimensional summaries ' *
allow an attacker
with knowledge of population
to test membership in a data set

[o2]

oOnN &»&O

Chromosomal location

°* Membership is sensitive
» Not specific to genetic data (no-fly list, census data...)

» Learn much more if statistics are provided by subpopulation

* Recently:

» Strengthened membership tests
[Dwork, S., Steinke, Ullman, Vadhan ‘1 5]

» Tests based on learned face recognition parameters
[Frederiksson et al ‘15]



Membership tests from marginals

* X:set of n binary vectors from distrib P over {0,1}¢

* g(X) =X €[0,1]%: proportion of 1 for each attribute

* 7z €{0,1}%: Alice’s data

* Eve wants to know if Alice is in X.

Eve knows
>q(X) =X
> z: either in X or from P

» Y: n fresh samples from P

* [Sankararam et al, ‘09]
Eve reliably guesses if z € X
when d > cn
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Strengthened membership tests [DSSUV’15]

* X:set of n binary vectors from distrib P over {0,1}¢

* g(X) = X + a: approximate proportions
e 7z €{0,1}%: Alice’s data

* Eve wants to know if Alice is in X.

Eve knows
>gX) =Xt a

> z: either in X or from P

» Y: m fresh samples from P

e [DSSUV’I5]

Eve reliably guesses if z € X

when d > ¢’ (n + a?

2
n? + —
m
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Robustness to perturbation

n =100
m = 200
d = 5,000
Two tests

» LR [Sankararam et al’09
» |P [DSSUV’I 5]

Two publication mechanisms

True positive rate

10
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—————

_____________________

— Rounding, LR. auc = 0.1935
— - Rounding, IP. auc = 0.9596
— Exact, LR. auc = 1.0
Exact, IP. auc = 0.9894 i

b
0.0

02 0.4 06 08
False positive rate

» Rounded to nearest multiple of 0.1 (red / green)

» Exact statistics (yellow / blue)

Conclusion: IP test is robust.
Calibrating LR test seems difficult

10
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“Correlation” attacks

* Suppose you know that | smoke and...

» Public health study tells you
that | am at risk for cancer

> You decide not to hire me

* Learn about me by learning about underlying population
> It does not matter which data were used in study
» Any representative data for population will do

* Widely studied
» De Finetti [Kifer ‘09]
» Model inversion [Frederickson et al ‘I5] *
» Many others

* Correlation attacks fundamentally different from others
» Do not rely on (or imply) individual data
» Provably impossible to prevent **

* Model inversion used two few different ways in [Frederickson et al.] ** Details later.



A partial taxonomy of attacks

* Reidentification attacks

> Based on external sources or other releases

* Reconstruction attacks

S PSS _ Alice
& Bob
NEBEEREE Charlie
& & Danielle
& 9P Erica

&1 & Frank

Identified NetFlix Data

» “Too many, too accurate” statistics ﬂ

allow data reconstruction

°* Membership tests

» Determine if specific person in data set
(when you already know much about them)

lllllllll
OOOOOOOOO

IIIIIIIII

* Correlation attacks

» Learn about me by learning
about population

22



Privacy In Statistical Databases

* Why is this challenging?

»> A partial taxonomy of attacks

Differential privacy ?

~, ° Aggregate” = stability to small changes in input
* Connection:
* Handles arbitrary external information

* Rich algorithmic and statistical theory

23



D|ffe ren“al PrlvaC! [Dwork, McSherry, Nissim, S. 2006]

* |ntuition:

» Changes to my data not noticeable by users

» Output is “independent” of my data

24



D|ffe ren“al PrlvaC! [Dwork, McSherry, Nissim, S. 2006]

—

(A e
5 I

coins

* Dataset x = (x1,...,xy,) € D"
» Domain D can be numbers, categories, tax forms
» Think of x as fixed (not random)

°* A = randomized procedure
» A(x) is a random variable

» Randomness might come from adding noise, resampling, etc.

25



D|ffe ren“al PrlvaC! [Dwork, McSherry, Nissim, S. 2006]

—

i local random i local random

coins coins

* A thought experiment
» Change one person’s data (or remove them)
» Will the distribution on outputs change much?

26



D|ffe ren“al PrlvaC! [Dwork, McSherry, Nissim, S. 2006]

J—=

Iocal random i
coins

local random
coins

X’ is a neighbor of x
if they differ in one data point

for all neighbors x, x,
for all subsets S of outputs

Definition: A is e-differentially private if,

Pr(A(x) €S) <e®-Pr(A(x') € S)

Neighboring databases
induce close distributions
on outputs

27




D|fferent|a| PrlvaC [Dwork, McSherry, Nissim, S. 2006]

Iocal random i local random
coins coins

J—=

s a neighbor of x
if differ in one data point
Neighboring databases
induce close distribution
on outputs

Definition: Ais (8,6)\-/differentially private i

for all neighbors x, x,
for all subsets S of outputs

Pr(A(x) €S) <e®-Pr(A(X) €S) 40

28



D|ffe ren“al PrlvaC! [Dwork, McSherry, Nissim, S. 2006]

* This is a condition on the algorithm A

» Saying a particular output is private makes no sense

* Choice of distance measure matters
* What is &?
» Measure of information leakage

» Not too small (think 1 hot L
10 250

Definition: A is e-differentially private if,
for all neighbors x, x,
for all subsets S of outputs

Pr(A(x) €S) <e®-Pr(A(x') € S)

Neighboring databases
induce close distributions
on outputs

29




Example: Noise Addition

function f

A(x) = f(x) + nmse

i local random

coins

x—=

* Say we want to release a summary f(x) € RP

> e.g., proportion of diabetics: x € {0,1} and f(x) = %Zix,;
* Simple approach: add noise to f(x)

» How much noise is needed?

° Intuition: f(x) can be released accurately when f is
insensitive to individual entries x4, ..., X,

30



Example: Noise Addition

function f

A(x) = f(x) + n0lS€

i local random

coins

[ * Global Sensitivity: GSy = max | f(z) — f(=)]1 ]

neighbors z,x’

x—=

> Example: GS o= 1

proportion — |

PETISN
’ ~
’ A
’ X \
’ \
] 1
1 1

b o 7
e S \ ’

1, 1 S < )
\47’,

31



Example: Noise Addition

function f

J—= ﬂh
Alx) = f(x) + n0lS€
i / local random

coins

[ * Global Sensitivity: GSy = max ||f(33) — f(")|1 ]

neighbors x

. 1
» Example: Gsproportion — q

Theorem: If A(x) = f(x) + Lap (%1) then A is e-differentially private.

> Laplace distribution Lap(4) has density

h(y) oc e~ ¥I/A h(y + GSz) AL (Y)
» Changing one point translates curve

|
32



Example: Noise Addition

function f

t—

) ¢ A(x) = f(x) + nOLse

i local random

coins

* Example: proportion of diabetics

1
» Gsproportion — n 1

> Release A(x) = proportion + —
. en
s this a lot?

> If x is a random sample frolm a large underlying population,
then sampling noise ~ —

Jn

» A(x) “as good as” real proportion

proportion

A(X)




Useful ProEerties

* Composition:
If Ai and Az are e-differentially private,
then joint output (Ai1,A2) is 2e-differentially private.

* Post processing: A is e-differentially private,
then so is g(A) for any function g

* Meaningful in the presence of arbitrary external information

Neighboring databases
induce close distributions
on outputs

Definition: A is e-differentially private if,
for all neighbors x, x,
for all subsets S of outputs

Pr(A(x) €S) <e®-Pr(A(x') € S)

34




Interpreting Differential Privacy

* A naive hope:

' bout me
he output as they

* Impossible because of correlation attacks

* Theorem [DN’06]: Learning things about individuals is
unavoidable in the presence of external information
* Differential privacy implies:
No matter what you know ahead of time,

You learn (almost) the same things about me
whether or not my data are used

35



Features or bugs?

* May not protect sensitive global information, e.g.
» Clinical data: Smoking and cancer
» Financial transactions: firm-level trading strategies
» Social data: what if my presence affects everyone else!?

* Leakage accumulates with composition
» € adds up with many releases

* Inevitable in some form [reconstruction attacks]

» How do we set €

37



Variations on the aggroach

* Predecessors [DDN’03,EGS’03,DN’04,BDMN’05]

* (g,6)- differential privacy
> Require Pr(A(x) € S) <e®-Pr(A(x) €S)+46
» Similar semantics to (g,0)- diffe.p. when 6 < |/n

* Computational variants [MPRV09,MMPRTV’10,GKY’ I 1]

* Distributional variants [RHMS’09,BBGLT’| I,BD’12,BGKS’ | 3]
» Assume something about adversary’s prior distribution
» Deterministic releases
» Composition becomes delicate

* Generalizations
» [BLR’08, GLP’| I] simulation-based definitions

» [KM’12, BGKS’ | 3] General language for specifying privacy concerns.
Downside: tricky to instantiate

38



What can we compute Qrivatelx?

i_ I —_— L1

—
A(x
- ( ) g
local random

local random i
coins coins

* “Privacy” = change in one input leads to small change in
output distribution

What computational tasks can we achieve privately?

* Lots of recent work, interesting questions

» Across different fields: statistics, data mining, machine
learning, cryptography, algorithmic game theory, networking,

info. theory



A Broad, Active Field of Science

* Basic Tools and Techniques

* Implemented systems
» RAPPOR (Google)
» PInQ (Microsoft)

» Fuzz (U. Penn)
» Privacy Tools (Harvard)

* Theoretical Foundations

» Feasibility results: Learning,
optimization, synthetic data, statistics

» Connections to game theory, robustness, false discovery
* Domain-specific algorithms

» Networking, clinical data, social networks, ...

40



Basic Technique 1:

Noise Addition

41



Example: Noise Addition [Dwork, McSherry, Nissim, S.

function f

A(x X) + noise
>

i local random

coins

[ * Global Sensitivity: GSy = max ||f(33) — f(")|1 ]

neighbors x

x—=

. 1
> Example: Gsproportion — 5

Theorem: If A(x) = f(x) + Lap (%1) then A is e-differentially private.

» Laplace distribution Lap(A) has density

h(y) o< e~ W1/ h(y + GS¢) s\ (Y)
» Changing one point translates curve

|
42



Examgle: Histograms

* Say xi,x2,...,xn in domain D
» Partition D into d disjoint bins
> f(x) = (n1,nz2,...,nq) where nj = #{i : x; in j-th bin}
» GSr= |
» Sufficient to add noise Lap(1/e) to each count

* Examples - |
» Histogram on the line
» Populations of 50 states 7 1

» Marginal tables

* bins = possible combinations of attributes

ABO Type | Rh Type |How Many Have It

0 positive 38%
45%
negative 7%

o]

A positive 34%
40%

A negative 6%

B positive 9%
11%

B negative 2%

AB positive 3%
4%

AB negative 1%

(Source: American Association of Blood Banks)

43



Using alobal sensitivit

(Gs;= max_[1f@)— @)l )

neighbors z,

* Many natural functions have low sensitivity

> e.g., histogram, mean, covariance matrix, distance to a
function, estimators with bounded “sensitivity curve”,
strongly convex optimization problems

* Laplace mechanism can be a programming interface
[BDMN "05]

» Implemented in several systems [McSherry ‘09, Roy et al. |0,
Haeberlen et al. ’| |, Moharan et al. ’12]

44



Variants in other metrics

* Consider f : D" — R
* Global Sensitivity:[GSf _

max | f(z) - f($’)||-}2\

neighbors z,x

[Theorem: If A(x) = f(x) —I—LS-B"('GTS‘TA, then A is gdifferentially private.]

GS; -3 +/In(1/6)\2 (€, 0)
o Example ¥ (* )
xample € .cates
» f(x) = vector ot counus.
>
>G\gcjlc ngi% per entry instead of

\/dIn(1/6) d
€ c

45



Global versus local [NRS0O7
%«y’)
)’ z

2 \f(y)

f(x’)
ST
/ L ddg\ AK)
f ‘? noise A(x)
D" Distributions on R¢

* Global sensitivity is worst case over inputs

['—Sf@) =

* Local sensitivity:

If(z) — £z’ >||1]

x’ neig hbor of x

* Reminder:

INRS'07, DL (l}) T_'eH:\ﬁﬁlu%ﬁ With error = local sensitivity

46



Basic Technique 2:
Exponential Sampling

‘\_ﬁ
a‘ (
z

—s/"

47



ExEonentiaI SamEIing [McSherry, Tabwar 07)

* Sometimes noise addition makes no sense
> mode of a discrete distribution
» minimum cut in a graph

> classification rule

* [MTO7] Motivation: auction design

* Subsequently applied very broadly

48



Examgle: PoEuIar Sites

* Data: x; = {websites visited by student i today}
° Range: Y = {website names}
* “Score” ofy: q(y;x)=|{i:y E xi} |
* Goal: output the most frequently visited site
. . )
{Mechanlsm: Given x,

* Output website Yo with probability r,(y) o< exp(eq(y;x))

* Utility: Popular sites exponentially
more likely than rare ones

* Privacy: One person changes q(y; %)
websites’ scores by =|




Analxsis

. . )
{Mechanlsm: Given X,

* Output website Yo with probability m«(y) o exp(eg(y;x)) y

* Claim: Mechanism is 2¢e-differentially private
* Proof: ™) _ etV Yisey e < e*
v (Y) e€q(y;x’) EzEY e€d(z;x) —

* Claim: If most popular website has score T, then
Elg(yo;x)] 2 T — (log|Y])/€
® Proof: Outputyis bad if q(y;x) < T - k

> , , e(T—k)
Pr(bad outputs) < Pr(bad outputs) < [Yle < elog|Y|—ek
Pr(best output) ecT

» Get expectation bound via formula g(7) = > wso Pr(Z > k)



ExEonentiaI SamEIing

Ingredients:

* Set of outputs Y with prior distribution p(y)
* Score function q(y;x) such that

for all outputs y, neighbors x,x’:

4 . )
Mechanism: Given x,

o

* Output Yo from Y with probability
r(y) o< p(y)ecd ™

.

alyx) - qlyx)] = |

* Basis for first synthetic data results [Blum, Ligett, Roth "08]
» Preserve k linear statistics about data set with domain D

(log"/? k) (log"* | D))

nl/2



Using ExEonentiaI Sam[:_)ling

* Mechanism above very general
» Every differentially private mechanism is an instance!

» Still a useful design perspective

* Perspective used explicitly for
» Learning discrete classifiers [KLNRS 08]
» Synthetic data generation [BLR’08,...,HLM’| 0]
» Convex Optimization [CM’08,CMS’10]
» Frequent Pattern Mining [BLST’10]
» Genome-wide association studies [FUS’| |]

» High-dimensional sparse regression [KST’12]
> ...

52



Dlgltal Good Auction [McSherry, Talwar *07]

* | seller with a digital good
Cite me
maybe | \

* n potential buyers "‘\*\\“ Jl
» Each has a secret value v; in [0,1] for song o N
» Setting price p will get revenue rev(p) = pl{i: vi 2 p}|
» How can seller set p to get revenue = OPT = max rev(p)!?

* Straightforward bidding mechanism
» Each player reports vi’
» Lying can drastically change best price

* Instead, sample p* from density r(p) « exp(€ . rev(p))
» Expected revenue 2 OPT - O(In(en)/€)

53



A Broad, Active Field of Science

* Basic Tools and Techniques

* Implemented systems
» RAPPOR (Google)
» PInQ (Microsoft)

» Fuzz (U. Penn)
» Privacy Tools (Harvard)

* Theoretical Foundations

» Feasibility results: Learning,
optimization, synthetic data, statistics

» Connections to game theory, robustness, false discovery
* Domain-specific algorithms

» Networking, clinical data, social networks, ...

54



ImEIications for other areas

* Game theory & economics

» Differentially private mechanisms are automatically
“approximately truthful”

» Participating in a DP mechanism doesn’t hurt me

* Statistical analysis: Differential privacy is a strong type
of stability or robustness

» Regularization techniques from optimization help design DP
algorithms

» Control false discovery in adaptive data analysis

55



Ongoing Work

* Practical implementations
* Efficient algorithms

* Relaxed definitions

» Exploit adversarial uncertainty

* Differently-structured data

» E.g., social network data: which data is “mine”?

56



Conclusions

* Define privacy in terms of my effect on output

» Meaningful despite arbitrary external information

> | should participate if | get benefit

* Rigorous framework for private data analysis
» Rich algorithmic literature (theoretical and applied)

» There is no competing theory

* What computations can we secure!

» Differential privacy provided a surprising formalization for a
previously ad hoc area

> What other areas need formalization?

* How should we think about correlation attacks?

57



Further resources

®* Tutorial from CRYPTO 2012
>

* Courses:
>
>

* DIMACS Workshop on Data Privacy (October 2012)
» Videos of tutorials
>

* Simons Institute Big Data & DP Workshop (Dec 201 3)

> Talk videos online
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http://www.cse.psu.edu/~asmith/talks/2012-08-21-crypto-tutorial.pdf
http://www.cis.upenn.edu/~aaroth/courses/privacyF11.html
http://www.cse.psu.edu/~asmith/privacy598
http://dimacs.rutgers.edu/Workshops/DifferentialPrivacy/

