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Combinatorial Optimization Integral LPs

One Goal of Combinatorial Optimization

Much combinatorial optimization is around which LPs have guaranteed
integer optimal solutions.

Total unimodularity (TUM) — mostly network flow

Total dual integrality (TDI) — e.g., submodular RHSs

One early success: “A generalization of max flow-min cut” by A.J.
Hoffman (Math Prog 1974):

The first paper to formalize the notion that was later named TDI (by
Edmonds and Giles) . . .
. . . to show that a general model of max flow is still integral.

Here we proceed in this same spirit.
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Combinatorial Optimization Integral LPs

Non-TUM but Integral Network LPs

There are non-TUM ways to formulate some network flow problems that
still guarantee integrality:

Max flow via flows on paths — packing paths into arcs.

Dual of Dijkstra shortest path is packing cuts into arcs.

Recall that s–t paths and cuts are blockers of each other, i.e., paths
are minimal arc subsets that hit every cut, and vice versa.

These formulations do not in general work for weighted versions.

E.g., if we put general “rewards” on paths, then Max Weighted Path
Flow is NP Hard.
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Combinatorial Optimization Integral LPs

Natural Questions

Question 1: Can we generalize to abstract versions of path and cut
packing while maintaining integrality?

Question 2: Both max flow-type path packing and dual-Dijkstra cut
packing have all-one objective vectors, and are known to be fractional and
NP Hard with general objectives. For which more general objectives are we
still guaranteed integrality?

Question 3: Can we find polynomial algorithms for these abstract weighted
path and cut packing problems?
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Hoffman’s Models Packing problems

Packing problems

A generic packing problem has

A finite set E of elements

A family D of subsets of E, i.e., D ∈ D =⇒ D ⊆ E.

A vector u ∈ ZE of capacities on elements.

A vector r ∈ ZD of rewards on subsets.

The decision is to choose a weight yD to put on each D ∈ D such
that the total weight packed into e is at most ue ∀ e ∈ E.

And among such feasible packings, find one that maximizes rT y.

We are usually interested in finding integer optimal solutions.

This generic problem has many applications, e.g., flow is packing
paths into arcs, connectivity is packing trees into edges, etc.
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Hoffman’s Models Packing problems

Packing as an LP

Now formulate a packing problem as an LP (it’s more natural to
make packing the dual):

put dual packing variable yD on each D ∈ D;
put primal weight xe on each element e ∈ E.

The dual linear programs are:

(D) max
∑
D

rDyD (P) min
∑

e

uexe

s.t.
∑
D3e

yD ≤ ue ∀e ∈ E s.t.
∑
e∈D

xe ≥ rD ∀D ∈ D

y ≥ 0 x ≥ 0
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Hoffman’s Models Packing problems

Packing as an LP

Now formulate a packing problem as an LP (it’s more natural to
make packing the dual):

put dual packing variable yD on each D ∈ D;
put primal weight xe on each element e ∈ E.

The dual linear programs are:
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uexe

s.t.
∑
D3e

yD ≤ ue ∀e ∈ E s.t.
∑
e∈D

xe ≥ rD ∀D ∈ D

y ≥ 0 x ≥ 0

Big Question: When do these LPs have guaranteed integer optimal solu-
tions?
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Hoffman’s Models Packing problems

An example packing LP

Consider:

max1T y

s.t.



1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1


y ≤



1
5
5
8
4
7
9
3
6


y ≥ 0.

Does this LP have an integer optimal solution?

What if we change the RHS u? The objective r?
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Hoffman’s Models Packing problems

More on the example

This LP has an integer optimal solution: y∗ = (1 4 0 4 0 0 3 0 0) of
value 12.

In fact, it can be shown that this LP has integer optimal solutions for
any RHS u.

The same holds true for some objectives r:

E.g., r = (4 3 2 3 1 1 3 2 4) has integer optimal solution
y∗ = (1 4 0 4 0 0 0 0 3) of value 40 for the given RHS u, and this is
true for any integral u.

But not all objectives r:

E.g., r = (0 9 0 0 9 0 0 9 0) has fractional optimal solution
y∗ = (0 4.5 0 0 0.5 0 0 3.5 2.5) with value 76.5 for the given RHS u.

How do I know that the first two objectives are “good” for all RHS?
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Hoffman’s Models Packing problems

How the example was constructed

Consider the following graph:
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There is a 1–1 correspondence between E and the nine edges of this
graph.

There is a 1–1 correspondence between the 9 interesting s–t cuts in
this graph and the columns of the constraint matrix.

Why does this lead to integer optimal LP solutions?
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Hoffman’s Models Packing problems

The primal covering LP

Recall that the primal covering LP has variables xe . . .

. . . and constraints
∑

e∈D xe ≥ 1 for all D ∈ D.

Imagine that x is 0–1, so that it picks out a subset of edges.

What subsets of edges hit every s–t cut?

The s–t paths are the minimal edge subsets hitting every s–t cut, i.e.,
the s–t paths are the blocker of the s–t cuts.

Therefore the primal LP is just Shortest Path.

And in fact Dijkstra’s Algorithm gives an integer optimal solution to
this form of Shortest Path.
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Hoffman’s Models Packing problems

Going back to the dual packing LP

Here is the Dijkstra solution with its shortest path tree:
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Recall that we can greedily construct a tight cut packing that proves
that this shortest path tree is optimal:
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Hoffman’s Models Packing problems

Generalizing this behavior

Since we know that Dijkstra, and this greedy cut packing, work for
any non-negative capacities u, we know that we get integer optimal
solutions for all RHS u.

It is very cool that this random-looking constraint matrix always has
an integer optimal solution with the special objective vector 1.

LPs such as this where you get guaranteed integer optimal solutions
for all RHSs, but only for some special objective vectors, are called
Totally Dual Integral, or TDI.

A natural question here is whether we can generalize this sort of
example to a broader class of packing LPs with 0–1 constraint
matrices.

Hoffman did it . . .
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Hoffman’s Models Path models

Alan Hoffman’s Answers to Q1, Q2 for Paths

The Weighted Abstract Flow model:

We are given a finite set of elements E (nodes/arcs/mixed)

Each e ∈ E has capacity ue

And a family P of paths, where

P ∈ P means that P ⊆ E
each P ∈ P has a linear order <P (could have e <P f but f <Q e)

Make artificial s with s <P e and t with e <P t ∀ e ∈ P and define,
e.g., (s, f ]P = {e ∈ P | e ≤ f}.

each P ∈ P has a per flow unit reward rP (the weight of P )

E and P are connected by a Crossing Axiom (F & F):
If e ∈ P ∩Q, then
P×eQ := argmax{rV | V ∈ P, V ⊆ (s, e]P ∪ [e, t)Q} is well-defined.

r satisfies a kind of supermodularity:

rP×eQ + rQ×eP ≥ rP + rQ.
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Hoffman’s Models Path models

Picture of Crossing Axiom
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Hoffman’s Models Path models

Picture of Crossing Axiom
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Hoffman’s Models Path models

Picture of Crossing Axiom

Possible that e /∈ P×eQ
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Hoffman’s Models Path models

Picture of Crossing Axiom
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Hoffman’s Models Path models

Picture of Crossing Axiom

rP×eQ + rQ×eP ≥ rP + rQ
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Hoffman’s Models Path models

The Weighted Abstract Flow linear programs

The Weighted Abstract Flow (WAF) problem associated with E and
P puts

flow variable xP on each P ∈ P;
weight ye on each element e ∈ E.

The dual linear programs are:

(P) max
∑
P

rPxP (D) min
∑

e

ueye

s.t.
∑
P3e

xP ≤ ue ∀e ∈ E s.t.
∑
e∈P

ye ≥ rP ∀P ∈ P

x ≥ 0 y ≥ 0
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∑
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ye ≥ rP ∀P ∈ P

x ≥ 0 y ≥ 0

If P is just s–t paths in a max flow network, and r ≡ 1, then this is just
the usual formulation of Max Flow/Min Cut using path-flow variables.
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The Weighted Abstract Flow linear programs
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Theorem (Hoffman ’74)

When r and u are integral, (P) and (D) have integral optimal solutions.
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Hoffman’s Models Path models

Notes on Weighted Abstract Flow

In 1974 there were a lot of papers being written on minor variations
of Max Flow Min Cut.

Alan’s paper captured all these variations in one fell swoop.

Alan’s model was motivated by the (rarely read) original paper by
Ford and Fulkerson on MF/MC.

The possibility of supermodular r is interesting:

It means that the model includes transportation problems (and hence
min-cost flow)
Alan remarked in a 2010 email to me “when I first wrote the paper
with the [super]modular r (rather than all 1’s), I put in the r because it
came free”.
Alan earlier verbally told me that he put in the supermodular r because
he wanted to imitate the nice things that Jack Edmonds was doing.
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Hoffman’s Models Path models

NETFLOW ’93

In a talk at NETFLOW ’93 (San Miniato, Italy) Alan asked:

Is there a reasonable way using only [the WAF assumptions]
and some modest oracle to find a generalized max flow and
a min cut? Since it is known [’74 paper] that, for integral
capacities, there is an optimum flow which is integral, it
would even be progress to find an algorithm which increases
a given flow by one unit, if the given flow is not optimum.

At lunch afterwards Bill Pulleyblank accosted some of us and said
something like “surely some of you young guys should be able to
answer Alan’s question”.

As a bonus, Bill relayed to us Alan’s concrete suggestion for an oracle
for the max flow (r ≡ 1) version: You send the oracle a subset S of
the elements, and it tells you whether there is a path P with P ⊆ S
(and <P ) or not.
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Hoffman’s Models Cut models

Alan Hoffman’s Answers to Q1, Q2 for Cuts

We are given a finite set of elements E (nodes/arcs/mixed)

Each e ∈ E has capacity ue

And a family L of cuts, where

D ∈ L means that D ⊆ E
L is a lattice with partial order � and operations ∧ and ∨ satisfying

Di ≺ Dj ≺ Dk =⇒ Di ∩Dk ⊆ Dj (consecutive), and
(Di ∧Dj) ∪ (Di ∨Dj) ⊆ Di ∪Dj (submodular).

each D ∈ L has a per unit reward rD (the weight of D)

r satisfies a kind of supermodularity:

rDi∧Dj + rDi∨Dj ≥ rDi + rDj .
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Hoffman’s Models Cut models

Understanding the Cut Axioms

Ordinary cuts are partially ordered:

Ordinary cuts have meet and join, and
submodularity:

Ordinary cuts are consecutive (e ∈ R∩ T
=⇒ e ∈ S):

S ≺ T

e

R S

R ∧ S R ∨ S

e

R S T≺ ≺
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Hoffman’s Models Cut models

The Weighted Abstract Cut Packing linear programs

The Weighted Abstract Cut Packing (WACP) problem associated
with E and L puts

packing variable xD on each D ∈ L;
weight ye on each element e ∈ E.

The dual linear programs are:

(P) max
∑
D

rDxD (D) min
∑

e

ueye

s.t.
∑
D3e

xD ≤ ue ∀e ∈ E s.t.
∑
e∈D

ye ≥ rD ∀D ∈ L

x ≥ 0 y ≥ 0
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Hoffman’s Models Cut models

The Weighted Abstract Cut Packing linear programs

The Weighted Abstract Cut Packing (WACP) problem associated
with E and L puts

packing variable xD on each D ∈ L;
weight ye on each element e ∈ E.

The dual linear programs are:

(P) max
∑
D

rDxD (D) min
∑

e

ueye

s.t.
∑
D3e

xD ≤ ue ∀e ∈ E s.t.
∑
e∈D

ye ≥ rD ∀D ∈ L

x ≥ 0 y ≥ 0

If L is just s–t cuts in a max flow network, and r ≡ 1, then this is just the
usual blocking dual formulation of Dijkstra shortest path.
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Theorem (Hoffman & Schwartz ’76)

When r and u are integral, (P) and (D) have integral optimal solutions.
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Hoffman’s Models Cut models

Other applications

Lattice polyhedra would not be so interesting unless they included
interesting applications other than Shortest Path:

Dilworth’s Theorem (chains and antichains in posets) and various
Greene-Kleitman generalizations.

Shortest Path in hypergraphs.

Polymatroids and intersections of polymatroids.

Min-cost arborescence.

Our example with r = (4 3 2 3 1 1 3 2 4) has integer optimal
solutions for all RHS u because this r is supermodular: each
rD = 6−# edges crossing D.

Our example with r = (0 9 0 0 9 0 0 9 0) can have a fractional
solution because this r is not supermodular.

Etc, etc . . .
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Hoffman’s Models Blocking

Blocking Carries Over

Suppose that L is a clutter, i.e., if R,S ∈ L, then R 6⊂ S and S 6⊂ R
(edge sets of ordinary cuts are a clutter). Then

Theorem (Hoffman ’78)

If L is a submodular clutter, then the blocker of L is an abstract path
system.

Thus Weighted Abstract Flow and Weighted Abstract Cut Packing carry
over the blocking relationship of ordinary s–t paths and cuts.

What remains now is Q3:

Are there polynomial algorithms for solving Weighted Abstract Flow
and Cut Packing?
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Algorithms Primal-Dual Algorithm

The Primal-Dual Algorithm

Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for
max flow at min cost.

It greedily pushes flow on the cheapest (shortest) augmenting path.

Primal-Dual Algorithm:

Set x = 0, π = 0.
While augmenting paths remain do

Use Shortest Path to compute the subnetwork S
of min-cost augmenting paths (dual change).

Use Max Flow to augment all paths in S (primal change).
End

Each iteration maintains that x and π are optimal for current flow
value, so when x becomes a max flow, it is optimal.
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Algorithms Primal-Dual Algorithm

A Technical Detail

Complementary slackness =⇒ if a dual variable > 0, the primal
constraint must stay tight.

Thus P-D solves a restricted problem in inner iterations where some
elements in R must stay tight.

But otherwise, the advantage of P-D is that it replaces the
complicated objective rTx with a simple objective 1Tx.

Due to R, the solution to the restricted dual could have −1 values in
it, so the dual update need not be monotone.
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Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 1

Path Packing

max instead of min =⇒ must
start with max weight paths.

Define λ as the weight of the
current highest-reward path;
initially λ = maxP rP = rmax.

Relax y(P ) ≥ rP to
y(P ) ≥ rP − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

Cut Packing

max instead of min =⇒ must
start with max weight cuts.

Define λ as the weight of the
current highest-reward cut;
initially λ = maxD rD = rmax.

Relax y(D) ≥ rD to
y(D) ≥ rD − λ.

[When λ = rmax, x = y = 0 is
optimal.]

Now decrease λ to 0, keeping
optimality =⇒ when λ = 0 we
are optimal.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 29 / 41



Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 2

Path Packing

Martens & Mc.

“Finished”: see IPCO Bertinoro
2008.

For fixed λ, focus on subnetwork
of paths with
gap(P ) = y(P )− rP + λ = 0.

Lemma: this subnetwork still
satisfies the axioms.

But R = {e | ye > 0} is
restricted to be tight, i.e.,∑
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Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 3

Path Packing

Solve gap(P ) = 0 subnetwork
using extension of Mc ’95
Abstract MF.

Since restr. subnetwork is MF,
it’s blocked by a Min Cut l.

Here l is 0, ±1:

}
L+

}
L− ⊆ R

}
le = 0 , e /∈ Rxe = 0

xe = ue

L

L

xe = ue

Cut Packing

Solve gap(D) = 0 subnetwork
using extension of A. Frank ’99
Abstract SP.

Since restr. subnetwork is cut
pack, it’s blocked by a SP l.

Here l is 0, ±1:

e ∈ R, le = −1
L
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Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 4

Path Packing

Restricted subnetwork uses
original x, auxiliary dual l.

Thus x is automatically
updated.

Update y′ ←− y + θl
λ′ ←− λ− θ

=⇒ gap′(P )←−
gap(P ) + θ(l(P )− 1).

Lemma: θ is always an integer.

If θ is determined by
gap′(P ) ≥ 0 as
θ = gap(P )/(1− l(P )) then
l(P ) = 0.

Cut Packing

Restricted subnetwork uses
original x, auxiliary dual l.

Thus x is automatically
updated.

Update y′ ←− y + θl
λ′ ←− λ− θ

=⇒ gap′(D)←−
gap(D) + θ(l(D)− 1).

Lemma: θ is always an integer.

If θ is determined by
gap′(D) ≥ 0 as
θ = gap(D)/(1− l(D)) then
l(D) = 0.
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Algorithms P-D for path and cut packing

P-D for Path and Cut Packing 5

Path Packing

Each solve of Restr. Abstract
MF is polynomial.

x stays same at most n
consecutive solves =⇒
O(nrmax) solves.

This gives a pseudo-polynomial
bound.

Make weakly polynomial via bit
scaling =⇒ sensitivity analysis.

Theorem: This algorithm solves
Weighted Abstract Flow in
weakly polynomial time.

Cut Packing

Each solve of Restr. Abstract
Cut Pack is polynomial.

x stays same at most n
consecutive solves =⇒
O(nrmax) solves.

This gives a pseudo-polynomial
bound.

Make weakly polynomial via bit
scaling =⇒ sensitivity analysis.

Theorem: This algorithm solves
Weighted Abstract Cut Packing
in weakly polynomial time.
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Extensions Flows over Time

Abstract Flows over Time

Question: can we extend the max flow version of WAF to flows over
time (“dynamic flows”) with time horizon T?

Answer (J. Matuschke): Yes, via extending Ford and Fulkerson’s ideas
about flows over time.

For ordinary networks, can compute flows over time via a
time-expanded network.

Ok, but the size of the time-expanded network is pseudo-polynomial in
T :-(

F&F idea: Compute a max-reward flow in a (polynomial-sized) static
network, then repeat this flow over time.

Same idea works for abstract networks, but need to repeat path flows
over time.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 35 / 41



Extensions Flows over Time

Abstract Flows over Time

Question: can we extend the max flow version of WAF to flows over
time (“dynamic flows”) with time horizon T?

Answer (J. Matuschke): Yes, via extending Ford and Fulkerson’s ideas
about flows over time.

For ordinary networks, can compute flows over time via a
time-expanded network.

Ok, but the size of the time-expanded network is pseudo-polynomial in
T :-(

F&F idea: Compute a max-reward flow in a (polynomial-sized) static
network, then repeat this flow over time.

Same idea works for abstract networks, but need to repeat path flows
over time.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 35 / 41



Extensions Flows over Time

Abstract Flows over Time

Question: can we extend the max flow version of WAF to flows over
time (“dynamic flows”) with time horizon T?

Answer (J. Matuschke): Yes, via extending Ford and Fulkerson’s ideas
about flows over time.

For ordinary networks, can compute flows over time via a
time-expanded network.

Ok, but the size of the time-expanded network is pseudo-polynomial in
T :-(

F&F idea: Compute a max-reward flow in a (polynomial-sized) static
network, then repeat this flow over time.

Same idea works for abstract networks, but need to repeat path flows
over time.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 35 / 41



Extensions Flows over Time

Abstract Flows over Time

Question: can we extend the max flow version of WAF to flows over
time (“dynamic flows”) with time horizon T?

Answer (J. Matuschke): Yes, via extending Ford and Fulkerson’s ideas
about flows over time.

For ordinary networks, can compute flows over time via a
time-expanded network.

Ok, but the size of the time-expanded network is pseudo-polynomial in
T :-(

F&F idea: Compute a max-reward flow in a (polynomial-sized) static
network, then repeat this flow over time.

Same idea works for abstract networks, but need to repeat path flows
over time.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 35 / 41



Extensions Flows over Time

Abstract Flows over Time

Question: can we extend the max flow version of WAF to flows over
time (“dynamic flows”) with time horizon T?

Answer (J. Matuschke): Yes, via extending Ford and Fulkerson’s ideas
about flows over time.

For ordinary networks, can compute flows over time via a
time-expanded network.

Ok, but the size of the time-expanded network is pseudo-polynomial in
T :-(

F&F idea: Compute a max-reward flow in a (polynomial-sized) static
network, then repeat this flow over time.

Same idea works for abstract networks, but need to repeat path flows
over time.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 35 / 41



Extensions Flows over Time

Abstract Flows over Time

Question: can we extend the max flow version of WAF to flows over
time (“dynamic flows”) with time horizon T?

Answer (J. Matuschke): Yes, via extending Ford and Fulkerson’s ideas
about flows over time.

For ordinary networks, can compute flows over time via a
time-expanded network.

Ok, but the size of the time-expanded network is pseudo-polynomial in
T :-(

F&F idea: Compute a max-reward flow in a (polynomial-sized) static
network, then repeat this flow over time.

Same idea works for abstract networks, but need to repeat path flows
over time.

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 35 / 41



Extensions Flows over Time

The Static Abstract Network

Now each element e has a time delay τe, so it takes time
τ(P ) =

∑
e∈P τe for flow to traverse path P .

What is our reward for putting flow xP on P in a static abstract
network?

We can repeat flow xP until time r(P ) ≡ T − τ(P ).

In order to maximize abstract flow over time, we want to repeat as
much flow as possible as long as possible, i.e., max

∑
P r(P )xP .

Lemma

This r(P ) is supermodular.

Thus we can solve max abstract flow over time in polynomial time
(modulo lots of details).
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Extensions Flows over Time

Reconsidering Supermodularity of r

Recall that no “real” application of supermodularity of r was known.

It is needed for transportation problems, but they use modular r.

This application to max abstract flow finally gives us an application
where the supermodularity was really necessary.
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Extensions Parametric Capacities

Parametric Abstract Flow?

There is a big literature on MF/MC with capacities parametric in
scalar λ with lots of applications.

General result by Topkis: Consider min f(x, λ) with x on a lattice.
Suppose that

1 f(x, λ) is submodular in x for each fixed λ, and
2 For all x � y and λ1 ≤ λ2 we have Decreasing Differences
f(y, λ2)− f(y, λ1) ≤ f(x, λ2)− f(x, λ1).

Then there are monotone optimal solutions x∗(λ) such that for
λ1 ≤ λ2 we have x∗(λ1) � x∗(λ2).

When we specialize to MF/MC we find that min cuts are nested in λ
(when parametric capacities satisfy (2)).

Gallo, Grigoriadis, and Tarjan (GGT) considered such a class, and
showed that you can compute all min cuts in O(1) Push-Relabel time

Extended by Gusfield and Martel; Mc; F. Granot, Mc, Queyranne,
Tardella; . . .
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Extensions Parametric Capacities

Does Submodularity Generalize?

In his book, Topkis shows some extensions to transportation problems
under some circumstances, as submodularity of more general
problems than MF/MC was not evident.

But it’s not hard to show that in fact min-cost flow dual objective
value is submodular in the node potentials (using min and max as ∨
and ∧); proved by Murota.

This plus Topkis gives that GGT-structured parametric capacities lead
to monotone dual optimal solutions for min-cost flow.

WAF generalizes min-cost flow, hmmmm . . .

Matuschke and Peis conjecture that we can show GGT-type results
also for max flow versions of abstract flow.

Then parametric abstract flows over time :-) ?
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Conclusion Open questions

Conclusions

1 We found the first combinatorial polynomial algorithms for Weighted
Abstract Flow and Cut Packing.

2 Can we get a combinatorial faster, or even strongly polynomial
algorithm? Maybe some version of Min Mean Cycle?

3 Gröflin and Hoffman extended lattice polyhedra to 0, ±1 matrices
and to a version with sub- and super-modular interchanged; can we
adapt our algorithm for these?

4 Typically for such problems, figuring out how to represent the problem
is a big hurdle; here we suppressed details of the oracles we are using.

5 Could we further extend this idea to solve, e.g., Schrijver’s general
framework for TDI problems?

6 One can make a good career out of answering open questions in
Alan’s papers :-)

McCormick et al (UBC et al) Abstract Path & Cut Packing Hoffman-Fest Sept 2014 40 / 41



Conclusion Open questions

Conclusions

1 We found the first combinatorial polynomial algorithms for Weighted
Abstract Flow and Cut Packing.

2 Can we get a combinatorial faster, or even strongly polynomial
algorithm? Maybe some version of Min Mean Cycle?
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Conclusion Open questions

Dedication

I dedicate this talk to
Alan Hoffman’s 90th birthday,

and to his long and fruitful career.

Questions?

Comments?
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