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Random Network Coding and Designs Over GF(q)

» COST Action IC1104: an EU-funded network
» Funding for workshops, meetings, short research visits
» Chairs: M. Greferath & M. Pavcevié

» S. Blackburn, T. Etzion, A. Garcia-Vasquez, C. Hollanti, J.
Rosenthal

> Network involving 28 participant countries

» Final meeting: Network Coding and Designs, Dubronvik, April
4-8, 2016.

> g-designs, subspace codes, rank-metric codes, distributed
storage, cryptography, related combinatorial structures.



Some Impacts of Network Coding

DA



Error-Correction in Network Coding

The following seminal papers stimulated a huge volume of work on
subspace and rank-metric codes.

» Kotter, Kschischang, “Coding for Erasures and Errors in
Random Network Coding,” IEEE Trans. Inform. Th. (54), 8,
2008. (cited by: 292 (Scopus), 605 (Google))

» Silva, Kschischang, Kotter, “A Rank-Metric Approach to Error
Control in Random Network Coding,” |IEEE Trans. Inform.
Th. (54), 9, 2008. (cited by 195 (Scopus), 259 (Google))

Motivation: To provide a framework for error correction in
networks without much knowledge of the network topology.



Constant Dimension Subspace Codes

A subspace code C is a set subspaces of g, equipped with the
subspace distance:

ds(U,V) = dim(U+ V)—dim(Un V)
= dimU + dimV — 2dim(U N V).

If each codeword has dimension k then C is a constant
dimension code and ds(U, V) = 2(k — dim(U N V)).
Channel model: U — V ==n(U) & W.

w(U) < U, formed by ‘deletions’, W formed by ‘insertions’.

v

v

v

v

Receiver decodes to unique codeword if

2(dimU — dimn(U) + dimW) < ds(C).

v

Matrix model: X € IF‘Z’X” — Y =AX + BZ.



Rank-Metric Codes

A rank-metric code C is a subset of F7™*", equipped with the rank
distance:

dx(F,G) = rk(F—G)
C can be lifted to a (constant dimension) subspace code via:
Z(C) := {{X) = rowspace([/|x]) : x € C}.
> ds((X),(Y)) = du(x —y)

» Matrix model: X — Y = AX + BZ.

» Receiver decodes to unique codeword if

2(rkX — tkAX + 1kBZ) < d(C).



Optimality

> Gq(n, k) = set of all k-dim’l subspaces of Fg.
» What is the optimal size Ay(n, d, k) of a constant dimension
code in G4(n, k) of minimum distance d?

» How do we construct such codes?

Example 1

Let C C G(n, k) such that every t-dimensional subspace is
contained in exactly one space of C. So C is an S4(t, k, n) Steiner
structure. Then [C| = Aq(n, 2(k — t + 1), k).

» A Steiner structure is a g-analogue of design theory. Steiner
structures yield optimal subspace codes.



Examples of Steiner Structures

Theorem 2

There exists an S5(2,3,13). In fact there exist at least 401
non-isomorphic ones.

Braun, Etzion, Ostergard, Vardy, Wassermann, “Existence of
g-Analogs of Steiner Systems,” arXiv:1304.1462, 2012.

» This is the first known example of a non-trivial Steiner
structure.

> It shows that A»(13,4,3) = [123] / [ﬂ = 1,597, 245.
2 2

» Found by applying the Kramer-Mesner method.
» Prescribing an automorphism group of size
s = 13(2' — 1) = 106, 483 reduces from an exact-cover

problem of size 1,597,245 to one of size
152(2,3,13)|/s = 1,597, 245/106, 483 = 15.



Steiner Structures

Problem 3
Is there an S5(2,3,13) that is part of an infinite family of q-Steiner
systems?

Problem 4
Are there any other other examples?

Problem 5
Does there exist an 54(2,3,7)7 This is the g-analogue of the Fano
plane.

> An 5»(2,3,7) would have 381 of 11811 planes of PG(6,F>).
» Currently known that A»(7,2,3) > 329 (Braun & Reichelt).

» The automorphism group of any S»(2,3,7) is small (2,3 or 4).
» Computer search is infeasible at this time.



g-Fano plane

» Braun, Kiermaier, Naki¢, “On the Automorphism Group of a
Binary g-Analog of the Fano Plane,” Eur. J. Comb. 51, 2016.

» Kiermaier, Honold, “On Putative g-Analogues of the Fano
plane and Related Combinatorial Structures,” arXiv:
1504.06688, 2015.

» Etzion, “A New Approach to Examine g-Steiner Systems,”
arXiv:1507.08503, 2015.

» Thomas, 1987: It is impossible to construct the g-Fano plane
as a union of 3 orbits of a Singer group.



g-Analogues of Designs

Definition 6

D C Gg(n, k) isat—(n kX q) design (over Fy) if every
t-dimensional subspace of Fg is contained in exactly A subspaces
of D.

Existence: Fazeli, Lovett, Vardy, “Nontrivial t-Designs over Finite
Fields Exist for all t", J. Comb. Thy, A, 127, 2014.

> Introduced by Cameron in 1974.

» Thomas gave an infinite family of 2 — (n, 3,7;2) designs for
n= 41 mod 6. “Designs Over Finite Fields" Geometriae
Dedicata, 24, 1987.

» Suzuki (1992), Abe, Yoshiara (1993), Miyakawa, Munesmasa,
Yoshiara (1995), Ito (1996), Braun (2005).

» No 4-designs over F, are known.



g-Analogues of Designs

» Etzion, Vardy, “On g-Analogues of Steiner Systems and
Covering Designs,” Adv. Math. Comm. 2011.

» DISCRETAQ - a tool to construct g-analogs of combinatorial
designs (Braun, 2005).

» Kiermaier, Pavcevi¢ “Intersection Numbers for Subspace
Designs,” J. Comb. Designs 23, 11, 2015.

» Braun, Kiermaier, Kohnert, Laue, “Large Sets of Subspace
Designs,” arXiv: 1411.7181, 2014.



Maximum Rank Distance (MRD) Codes

» Delsarte, “Bilinear Forms over a Finite Field, with
Applications to Coding Theory,” J. Comb. Thy A, 25, 1978.

» Gabidulin, “Theory of Codes With Maximum Rank Distance,”
Probl. Inform. Trans., 1, 1985.

Theorem 7
A code C C IFQ”X” of minimum rank distance d satisfies

qm(d’fl) < ‘C’ < qm(nfd+1)'

Equality is achieved in either iff d + d" —2 = n. If C is Fg-linear
then d' = du (C1).
» If C meets the upper bound it is called an MRD code

» If C is MRD and IF linear we say it has parameters
[mn, mk,n— k +1],.



Delsarte-Gabidulin Codes

Theorem 8 (Delsarte)

Let ay,...,an be a basis of Fgn and let 31, ..., Bm C Fgn be linearly
indep. over Fy. The set

k—1
C = (Z tr (wgozfzﬁ,-)) twy € Fgn
/=0

1<i<n,1<j<m

is an Fgn-linear [mn, mk, n — k + 1]q MRD code.
Equivalent form: let g1, ..., 8m C Fgn be be linearly indep. over [Fg.

&1 &2 T Em
& & - &n
C= [Xl,...,Xk] . ZX,'EIFqn CFgl,
k—1 k—1 k—1
& & gm

is an Fgn-linear [mn, mk, n — k + 1] MRD code.



MRD Codes

> If C CFF"" is Fg-linear then
Ct={Y eF: Tr(XY") =0V XeC}
» Mac Williams’ duality theorem holds for rank-metric codes.

» Mac Williams' extension theorem does not hold for
rank-metric codes.

» C is MRD iff C* is MRD.

» If C is MRD then its weight distribution is determined.
» The covering radius of an MRD code is not determined.
» Not all MRD codes are Delsarte-Gabidulin codes.

» [n%, n, n]l, MRD codes are spread-sets in finite geometry.

> Delsarte-Gabidulin MRD codes can be decoded using
Gabidulin’s algorithm with quadratic complexity.



MRD Codes

There are many papers on decoding rank-metric codes. Recently
there has been much activity on the structure of MRD codes.

>

Gadouleau, Yan, “Packing and Covering Properties of Rank
Metric Codes,” IEEE Trans. Inform. Theory, 54 (9) 2008.

Morrison, “Equivalence for Rank-metric and Matrix Codes and
Automorphism Groups of Gabidulin Codes,” |IEEE Trans.
Inform. Theory 60 (11), 2014.

de la Cruz, Gorla, Lopez, Ravagnani, “Rank Distribution of
Delsarte Codes,” arXiv: 1510.01008, 2015.

Nebe, Willems, “On Self-Dual MRD Codes, arXiv:
1505.07237, 2015.

de la Cruz, Kiermaier, Wassermann, Willems, “Algebraic
Structures of MRD Codes,” arXiv:1502.02711, 2015.



Quasi-MRD Codes

Definition 9
C C Fg*" is called quasi-MRD (QMRD) if m fdim(C) and

dim(c)w 41

d(C):n—{

C is called dually QMRD if C is also QMRD.

de la Cruz, Gorla, Lopez, Ravagnani, “Rank Distribution of
Delsarte Codes,” arXiv: 1510.01008, 2015.

» An easy construction is by expurgating an MRD code.
» If C is QMRD is does not follow that Ct is QMRD.
» The weight distribution of a QMRD code is not determined.



MRD Codes as Spaces of Linearized Polynomials

For m = n we construct a Delsarte-Gabidulin MRD code with
parameters [n?, nk, n — k + 1] as follows:

i = {F = fox + AxI+ - f_1x9 " € Fon}

> f=fox+ Ax9+--- fk,lqu_l is Fg-linear (in fact is
[Fgn-linear) and so can be identified with a unique n x n
matrix over [Fy.

» Matrix multiplication corresponds to composition
mod x9 — x.

» dimgkerf < k—-1,sorkf>n—k+1.



New Classes of MRD Codes

Theorem 10 .
o
Let v € Fyn satisfy v a1 % (—1)"K. Then

Hic(vy h) = {fox + fixd + - fi_ix® +vf? X7 f € Fgn}

is an [Fg-linear [n?, nk,n — k + 1] MRD code.

Sheekey, “A New Family of Linear Maximum Rank Distance
Codes,” arXiv:1504.01581, 2015.

This is the most general known infinite family of MRD codes and
includes Delsarte-Gabidulin codes. Other work:

» Horlemann-Trautmann, Marshall, “New Criteria for MRD and
Gabidulin Codes and some Rank-Metric Code Constructions,”
arXiv:1507.08641, 2015.

» Lunardon, Trombetti, Zhou, “Generalized Twisted Gabidulin
Codes,” arXiv:1507.07855, 2015.



Rank Metric Covering Radius

Definition 11
The rank covering radius of a code C C F7™" is given by

p(C) = max{min{dy(X,C): CeC}: X € Fg*"}

= max{di(X,C): X e F7*"}
= max{rk(X + C) : X € Fg"™"}

> FZ*", m x n matrices over Fg.

» p(C) is the max rank weight over all translates of C in Fg™*".



Some Bounds on the Covering Radius

Theorem 12 (B., 2015)

Let C C C' CF7*". Then
> p(C) > min{r : Vg(m, n,r)|C| > q™"}.
> p(C) =

max{dy (X, C): X € C'} > min{dy (X, C) : X € C'\C} > du(C').

» IfC,C" are F4-linear, then p(C) > min{rk(X) : X € C'\C}.

» IfC is Fq-linear then p(C) is no greater than the number of
non-zero weights of C*.

Example 13

Let n=rs and let C = {312 fix? e Fgn}. Then C has
non-zero rank weights {s, 2s, ..., rs} over g, so that p(CH) <r.



Maximality

A code C C F7*" is called maximal if C is not strictly contained in
any code C" C F7*" with the same minimum distance.

Theorem 14 (Maximal Codes)

C CFg™" is maximal < p(C) < di(C) — 1.
Clearly any MRD code is maximal.
Example 15 (Gadouleau, 2008)

Let C be an Fg-linear [mn, mk, n — k + 1] Gabidulin MRD code.
C is a maximal code and is contained in an
Fq-[mn, m(k 4 1), n — k] Delsarte-Gabidulin code C’. Then

n—k=dx(C)<pC)<dk(C)—1=n—k.



Maximality

Theorem 16 (Sheekey, 2015)
Letv € Fgn sat/sfyu T # (—1)"%. Then

Hic(v, h) == {fox + fixT + - fiix® " 4 v X7 f € Fgn)

is an Fy-linear [n?, nk,n — k + 1] MRD code.

Example 17
C = Hy(v, h) is maximal and Hy(v, h) C Hi1(0, ') =C'.
Therefore

n—k=dy(C)<plC)<dy(C')—1=n—k.

» The current known families of MRD code C all have covering
radius dyk(C) — 1.

> There are sporadic examples of MRD codes C such that
p(C) < du(C) — 1.



Maximality of dually QMRD Codes

Theorem 18
Let C C IFZ“” be dually QMRD.
| 2
p(C) < 0*(C) = n — due(CH) +1 = du(C).
» Then p(C) < dik(C) if and only if C is maximal.

» IfC is maximal then in particular it cannot be embedded in an
[mn, mk, d,x.(C)] MRD code.

Example 19

Let C be the Fa-linear [16, 3, 4] code generated by
1 000 0100 0 01O
0 0 01 1 011 0111
0 01 0f’ 0 00 1}(° 1010
0100 1100 1 001

It can be checked that p(C) = 3 < dix(C) = 4, so C is maximal.



Broadcasting With Coded-Side Information

v

Index Coding

v

Broadcast Relay Networks
Coded Caching
Network Coding

v

v
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Broadcast with Coded-Side Information

» X € FZ” is the raw data held by the sender for m users.
» User i wants the packet Ri.X € IFf,.
User i has side information (V(), V(D X) € Fd>n x Fdixt,

The sender, after receiving each request R;, transmits
Y=LXE¢e IFQ’” for some L € ]ng”, N < n.

Each user decodes R; X by solving a linear system of equations
in the received Y and its side-information.

v

v

v

Objective 1

The sender aims to find an encoding LX that minimizes N such
that the demands of all users satisfied.

Dai, Shum, Sung, “Data Dissemination with Side Information and
Feedback”, IEEE Trans. Wireless Comm. (13) 9, 2014.



A Class of Codes for Coded-Caching

Now we consider codes of the form C = CD) @ ... @ C(™ for some
ci) < Fg of dimension d;. So C has the form:

X1
Xo .

C = ol iXiec® <FD L CFM,
Xm

» C with low covering radius are useful for coded-caching
schemes.

» el —cWt g g omt



A Class of Codes for Coded-Caching

Theorem 20 (B., Calderini, 2015)
Let C = @;E[m]C(f).
» p(C) < o*(C) = maxrk(Ch)
= max{dim(by, ..., by) : bj € C"L}.

» p(C) < max{n—d;:ie[m]}, if {1 :ie[m]} <aq.
>p(C)§mn{n— cie[ml}+0—-1if
e i e [ml}] < q/(qt — 1), ¢ > 1.
Example 21

LetC=CWq...aCM, each c) < IFg of dimension d. Suppose
that each C()) is systematic on the same set of coordinates, say
{1,2,...,d}. Then given any x € F7*", there exists y € C such
that x — y = [04]z]. So p(C) < n—d.



Broadcast With Coded-Side Information

1 Dai, Shum, Sung, “Data Dissemination with Side Information
and Feedback”, IEEE Trans. Wireless Comm. (13) 9, 2014.

2 Shanmugam, Dimakis, Langberg, “Graph Theory versus
Minimum Rank for Index Coding,” arXiv:1402.3898

Results of [2] can be extended based on setting in [1] (joint with
Calderini, 2015).
» clique: C C [m] such that {v: R; € (v) +C’;Vic C} # ()
» clique/local clique/fractional local clique covering number
» partitioned multicast/fractional partition multicast number
» partitioned local clique covering number

» there exist achievable schemes based on these



Other Impacts on Mathematics

v

Semi/quasifields

v

Linearized Polynomials

v

Graph theory
Matroids

Lattices

v

v



The End

Thanks for your attention!



