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Network Coding

[Ahlswede-Cai-Li-Yeung]

Beautiful result that established connections between
* (Coding and communication theory

* Networks and graphs

* Combinatorial Optimization

 Many others ...




Combinatorial Optimization

“Good characterizations” via “Min-Max” results 1s key
to algorithmic success

Multicast network coding result is a min-max result




Benetits ro Combinatorial
Optimization

My perspective/experience
New applications of existing results
New problems
New algorithms for classical problems
Challenging open problems

Interdisciplinary collaborations/friendships




Outline

* Part 1: Quantifying the benefit of network coding
over routing

* Part 2: Algebraic algorithms for connectivity




Part 1




Coding Advantage

Question: What is the advantage of network coding in
improving throughput over routing?




Coding Advantage

Question: What is the advantage of network coding in
improving throughput over routing?

Motivation
* Basic question since routing 1s standard and easy

* To understand and approximate capacity




Different Scenarios

Unicast in wireline zero-delay networks
Multicast in wireline zero-delay networks
Multiple unicast in wireline zero-delay networks
Broadcast/wireless networks

Delay constrained networks

Undirected graphs vs directed graphs




Max-tflow Min-cut Theorem

[Ford-Fulkerson, Menger]

G=(V,E) directed graph with
non-negative edge-capacities

max s-t flow value equal to min
s-t cut value

if capacities integral max flow
can be chosen to be integral

Min s-t cut value upper bound on information capacity

No coding advantage




Edmonds Arborescence
Packing Theorem

[Edmonds]
G=(V,E) directed graph with non-negative edge-capacities

A s-arboresence 1s a out-tree T rooted at s that contains all
nodes in V

Theorem: There are k edge-disjoint s-arborescences in G if
and only if the s-v mincut isk forallvin V

Min s-t cut value upper bound on information capacity

No coding advantage for multicast from s to all nodes in V




Enter Network Coding

Multicast from s to a subset of nodes T

[Ahlswede-Cai-Li-Yeung]

Theorem: Information capacity 1s equal to min cut
from s to a terminal in T

What about routing? Packing Steiner trees

How big 1s the coding advantage?




Multicast Example

s can multicast to t; and t, at rate 2
using network coding

Optimal rate since
min-cut(s, t|) = min-cut(s, t,) = 2

Question: what is the best achievable rate
without coding (only routing) ?




A4, A,, Az are multicast/Steiner trees: each edge of G in at most 2 trees
Use each tree for '; the time. Rate = 3/2




Packing Steiner trees

Question: If mincut from s to each t in T 1s k, how
many Steiner trees can be packed?

Packing questions fundamental in combinatorial
optimization

Optimum packing can be written as a “big” LP

Connected to several questions on Steiner trees




Several results/connections

[L1, Li] In undirected graphs coding advantage for multicast is at
most 2

[Agarwal-Charikar] In undirected graphs coding advantage for
multicast is exactly equal to the integrality gap of the bi-directed
relaxation for Steiner tree problem. Gap is at most 2 and at least
8/7. An important unresolved problem in approximation.

[Agarwal-Charikar]| In directed graphs coding advantage 1s exactly
equal to the integrality gap of the natural LP for directed Steiner
tree problem. Important unresolved problem. Via results from
[Zosin-Khuller, Halperin etal] coding advantages is Q(k ”*) or
Q(log? n)

|C-Fragouli-Soljanin] extend results to lower bound coding
advantage for average throughput and heterogeneous settings




New Theorems

[Kiraly-Lau’06]

“Approximate min-max theorems for Steiner rooted-
orientation of graphs and hypergraphs”

[FOCS’06, Journal of Combinatorial Theory ‘08]

Motivated directly by network coding for multicast




Multiple Unicast

G=(V,E) and multiple pairs (s, t;), (S5, ty), ..., (S, ti)
What 1s the coding advantage for multiple unicast?
* In directed graphs it can be Q(k) [Harvey etal]

* In undirected graphs it is unknown! [Li-Li]
conjecture states that there 1s no coding advantage




Multiple Unicast

What is the coding advantage for multiple unicast?

* Can be upper bounded by the gap between maximum
concurrent flow and sparsest cut

« Extensive work in theoretical computer science

* Many results known




Max Concurrent Flow and
Min Sparsest Cut

fi(e) : flow for pair 1 on edge e
Y. fi(e) <c(e) foralle

S1

val(f) > AD; forall1

max A (max concurrent flow)




Max Concurrent Flow and
Min Sparsest Cut

fi(e) : flow for pair 1 on edge e
difile) <cle) foralle
val(f) > AD; foralli

max A (max concurrent flow)

Sparsity of cut = capacity of cut / demand separated by cut

Max Concurrent Flow < Min Sparsity




Known Flow-Cut Gap Results

Undirected graphs O(log k)
Directed graphs O(k), O(n 11/23), Q(k), Q(nl/7)
Directed graphs, symmetricdemands O(logkloglogk), Q(logk)




Symmetric Demands

G=(V,E) and multiple pairs (s;, t;), (S5, ty), ..., (S, ti)

s; wants to communicate with t; and t; wants to
communicate with s; at the same rate

[Kamath-Kannan-Viswanath] showed that flow-cut gap

translates to upper bound on coding advantage. Using
GNS cuts




Challenging Questions

How to understand capacity?

* [Li-Li] conjecture and understanding gap between
flow and capacity in undirected graphs

* (Can we obtain a slightly non-trivial approximation to
capacity in directed graphs?




Capacity of Wireless
Networks




Capacity of wireless networks

Major issues to deal with:
e interference due to broadcast nature of medium

* noise




Capacity of wireless networks

Understand/model / approximate wireless networks via
wireline networks

* Linear deterministic networks [Avestimehr-Diggavi-
Tse’09]

* Unicast/multicast (single source). Connection to
polylinking systems and submodular flows [Amaudruz-
Fragouli’09, Sadegh Tabatabaei Yazdi-Savari’ll,
Goemans-Iwata-Zenklusen’09]

* Polymatroidal networks [Kannan-Viswanath’11]
* Multiple unicast.




Key to Success

Flow-cut gap results for polymatroidal networks

Originally studied by [Edmonds-Giles] (submodular
flows) and [Lawler-Martel] for single-commodity

More recently for multicommodity [C-Kannan-Raja-
Viswanath’12] motivated by questions from models
of [Avestimehr-Diggavi-Tse’09] and several others



Polymatroidal Networks

Capacity of edges incident to v jointly constrained by a
polymatroid (monotone non-neg submodular set func)

Yicsc(e) < Af(S) forevery S C {1,2,3,4}




Directed Polymatroidal Networks

[Lawler-Martel’82, Hassin’79]
Directed graph G=(V,E)

For each node v two polymatroids
* p, with ground set 0 (v)
* p,” with ground set 6*(v)

Yecsfle)< p,(S) forall S C §(v)
Secsf@) < p,*(S) forall S C 6%(v)




s-t flow

Flow from s to t: “standard flow” with polymatroidal
capacity constraints




What 1s the cap. of a cut?

Assign each edge (a,b) of cut to either a or b
Value = sum of function values on assigned sets

Optimize over all assignments

min{l+1+1, 1.2+1, 1.6+1}




Maxftlow-Mincut Theorem

[Lawler-Martel’82, Hassin’79]

Theorem: In a directed polymatroidal network the max s-t
flow 1s equal to the min s-t cut value.

Model equivalent to submodular-flow model of[Edmonds-
Giles’77] that can derive as special cases

* polymatroid intersection theorem
* maxflow-mincut in standard network flows

* Lucchesi-Younger theorem




Multi-commodity Flows

Polymatroidal network G=(V,E)
k pairs (s;,t)),...,(S,ty)
Multi-commodity flow:

f. 1s s;-t; flow

fle) = >, fi(e) is total flow on e

flows on edges constrained by polymatroid
constraints at nodes




Multi-commodity Cuts

Polymatroidal network G=(V,E)
k paiI'S (Slatl)a e ’(Skatk)
Multicut: set of edges that separates all pairs

Sparsity of cut: cost of cut/demand separated by cut

Cost of cut. as defined earlier via optimization




Main Result

|C-Kannan-Raja-Viswanath’12]

Flow-cut gaps for polymatroidal networks essentially
match the known bounds for standard networks

Undirected graphs O(log k)
Directed graphs O(k), O(n 11/23), Qk), Q(nl/7)
Directed graphs, symmetricdemands O(logklog logk), Q(logk)




Implications for network
information theory

Results on polymatroidal networks and special cases
have provided approximate understanding of the

capacity of a class of wireless networks




Implications for
Combinatorial Optimization

* Motived study of multicommodity polymatroidal
networks

* Resulted in new results and new proofs of old results

» Several important technical connections bridging
submodular optimization and embeddings
techniques for flow-cut gap results

Additional work [Lee-Mohorrrami-Mendel’14]
motivated by questions from polymatroidal networks




Networks with Delay

[Wang-Chen’14] Coding provides constant factor
advantage over routing even for unicast!

How much?




Networks with Delay

[Wang-Chen’14] Coding provides constant factor
advantage over routing even for unicast!

How much?

[C-Kamath-Kannan-Viswanath’15] At most O(log D)

See Sudeep’s talk later in workshop




Connections to Combinatorial
Optimization

Work in [C-Kamath-Kannan-Viswanath’15] raised a
very nice new flow-cut gap problem

“Triangle Cast”




Triangle Cast

Given G=(V,E) terminals sy, s, ..., sgandty, t; ...
communication pattern is s; to t; for all j > 1

@l




Connections to Combinatorial
Optimization

Work in [C-Kamath-Kannan-Viswanath’15] raised a
very nice new flow-cut gap problem

“Triangle Cast”

Connected to several classical problems such
multiway cut, multicut and feedback problems

Seems to require new techniques to solve

Inspired several new results [C-Madan’15]




Part 2

Algebraic algorithms for connectivity




Graph Connectivity

* Given a simple directed graph G=(V,E) and two nodes
s and t, compute the maximum number of edge
disjoint paths between s and t.

* Equivalently the min s-t cut value

Fundamental algorithmic problem in combinatorial
optimization




Known Algorithms

e [Even-Tarjan’75] O(min{m!>, n?3m}) run-time,
where n 1s the number of vertices and m is the
number of edges.

Recent breakthroughs (ignoring log factor)
* [Madry’13] O(m!?%7)
 [Sidford-Lee’14] O(mn!/?)




All Pairs Edge Connectivities

* Given simple directed graph G=(V,E) compute s-t
edge connectivity for each pair(s,t) n Vx V

* Not known how to do faster than computing each
pair separately. Even from a single source s to all v

» Undirected graphs have much more structure. Can
compute all pairs in O(mn polylog(n)) time




New Algebraic Approach

[Cheung-Kwok-Lau-Leung’11]
Faster algorithms for connectivity via

“random network coding”




Next few slides from Lap Chi Lau: used with his
permission




Random Linear Network
Coding

 Random linear network coding is oblivious to
network

[Jaggi| observed that edge connectivity from the
source can be determined by looking at the rank of
the receiver’s vectors. Restricted to directed acyclic
graphs.

For general graphs, network coding 1s more
complicated as it requires convolution codes.




New Algebraic Formulation

Very similar to random linear network coding




New Algebraic Formulation

(1) Source sends out linearly independent vectors.

If the source has outdegree d, then
the vectors are d-dimensional.




New Algebraic Formulation

(2) Pick random coefficients for each pair of adjacent edges

Random coefficients
Field size = 11




New Algebraic Formulation

(3) Require each vector to be a linear combination of its
incoming vectors.

Ja=T-f1+4-fe

Js =2 J3

Je =2 -fr+1-J3
fr=2-f4+10-fo+5- f5
Js=1-f3

Random coefficients
Field size = 11




New Algebraic Formulation

(3) Require each vector to be a linear combination of its
incoming vectors.

Ja=T-f1+4-fe

Js =2 J3

Je =2 -fr+1-J3
fr=2-f4+10-fo+5- f5
Js=1-f3

Random coefficients
Field size = 11




New Algebraic Formulation

(4) Compute vectors that satisfy all the equations.

Ja=T-f1+4-fe

Js =2 J3

Je =2 -fr+1-J3
fr=2-f4+10-fo+5- f5
Js=1-f3

Random coefficients
Field size = 11




Theorem: Field size is poly(m), with Zigh probability for

every vertex v, the rank of incoming vectors to v is equal to
the edge connectivity from s to v

e.g. s-t connectivity = rank (




How to compute those vectors?

Ja=T-f1+4- Je

Js =2 [3

Je =2 fr+1-J3
fr=2-f4+10- fo+5- f5
Js=1-f3




How to compute those vectors?




Algorithmic Results

* Advantages:

* compute edge-connectivity from one source to all
vertices at the same time

- Allow use of fast algorithms from linear algebra

e Faster Algorithms

- Single source / All pairs edge connectivities
» General / Acyclic / Planar graphs




General Directed Graphs

e S-v connectivity = rank of vectors going into v

e Computing F' takes O(m*) time




Multiple Sources

F=HI-K)!

For source 1

}_0000
0000




All-Pairs Edge-Connectivities

Incoming edges of v;
1 2 3 4 5

Outgoing edges of v; Connectivit

y
V3 -V,




All-Pairs Edge-Connectivity

Encoding: O(m%) (to compute the inverse)

Decoding: O(m?n"?) (to compute the rank of all submatrices)
Overall: O(mY)

Best known (combinatorial) methods: O(min(n?°m, m?n, n’m!%/7))

Sparse graphs: m=0(n), algebraic algorithm takes O(n") steps
while other algorithms takes O(n?) steps.




New Questions

e Isthere some combinatorial structure that the
algebraic structure is exploiting that we have not
found yet?

Can we obtain algorithms without using fast matrix
multiplication?

Does the algebraic methodology work for other
connectivity problems?




Benetits ro Combinatorial
Optimization

My perspective/experience
New applications of existing results
New problems
New algorithms for classical problems
Challenging open problems

Interdisciplinary collaborations/friendships




Personal Benefits

Collaborations with ECE/Info theory. Christina
Fragouli, Emina Soljanin, Serap Savari, Pramod
Viswanath, Sreeram Kannan, Adnan Raja, Sudeep
Kamath ...

Conversations with several CS researchers on interrelated
topics

Several papers. Direct and indirect!
Made me understand my own area better!

Friendships and fun




Thanks!




