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Network Coding

[Ahlswede-Cai-Li-Yeung] 

Beautiful result that established connections between

• Coding and communication theory

• Networks and graphs

• Combinatorial Optimization

• Many others …



Combinatorial Optimization

“Good characterizations” via “Min-Max” results is key 
to algorithmic success

Multicast network coding result is a min-max result



Benefits to Combinatorial 
Optimization

My perspective/experience

• New applications of  existing results

• New problems

• New algorithms for classical problems

• Challenging open problems

• Interdisciplinary collaborations/friendships



Outline

• Part 1: Quantifying the benefit of  network coding 
over routing 

• Part 2: Algebraic algorithms for connectivity



Part 1



Coding Advantage

Question: What is the advantage of  network coding in 
improving throughput over routing?



Coding Advantage

Question: What is the advantage of  network coding in 
improving throughput over routing?

Motivation

• Basic question since routing is standard and easy

• To understand and approximate capacity 



Different Scenarios

• Unicast in wireline zero-delay networks

• Multicast in wireline zero-delay networks

• Multiple unicast in wireline zero-delay networks

• Broadcast/wireless networks

• Delay constrained networks

Undirected graphs vs directed graphs



Max-flow Min-cut Theorem

[Ford-Fulkerson, Menger]

G=(V,E) directed graph with 
non-negative edge-capacities

max s-t flow value equal to min 
s-t cut value

if  capacities integral max flow 
can be chosen to be integral
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Min s-t cut value upper bound on information capacity

No coding advantage



Edmonds Arborescence 
Packing Theorem

[Edmonds]

G=(V,E) directed graph with non-negative edge-capacities

A s-arboresence is a out-tree T rooted at s that contains all 
nodes in V

Theorem: There are k edge-disjoint s-arborescences in G if  
and only if  the s-v mincut is k for all v in V

Min s-t cut value upper bound on information capacity

No coding advantage for multicast from s to all nodes in V



Enter Network Coding

Multicast from s to a subset of  nodes T

[Ahlswede-Cai-Li-Yeung] 

Theorem: Information capacity is equal to min cut 
from s to a terminal in T

What about routing? Packing Steiner trees

How big is the coding advantage? 



Multicast Example

s
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b1 b2

b1+b2

b1+b2 b1+b2

s can multicast to t1 and t2 at rate 2
using network coding

Optimal rate since 
min-cut(s, t1) = min-cut(s, t2) = 2

Question: what is the best achievable rate 
without coding (only routing) ?



A1, A2, A3 are multicast/Steiner trees: each edge of G in at most 2 trees
Use each tree for ½ the time.  Rate = 3/2
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Packing Steiner trees

Question: If  mincut from s to each t in T is k, how 
many Steiner trees can be packed?

• Packing questions fundamental in combinatorial 
optimization

• Optimum packing can be written as a “big” LP

• Connected to several questions on Steiner trees



Several results/connections

• [Li, Li] In undirected graphs coding advantage for multicast is at 
most 2

• [Agarwal-Charikar] In undirected graphs coding advantage for 
multicast is exactly equal to the integrality gap of  the bi-directed 
relaxation for Steiner tree problem. Gap is at most 2 and at least 
8/7. An important unresolved problem in approximation.

• [Agarwal-Charikar] In directed graphs coding advantage is exactly 
equal to the integrality gap of  the natural LP for directed Steiner 
tree problem. Important unresolved problem. Via results from 
[Zosin-Khuller, Halperin etal] coding advantages is Ω(k ½) or  
Ω(log2 n)

• [C-Fragouli-Soljanin] extend results to lower bound coding 
advantage for average throughput and heterogeneous settings



New Theorems

[Kiraly-Lau’06]

“Approximate min-max theorems for Steiner rooted-
orientation of  graphs and hypergraphs”

[FOCS’06, Journal of  Combinatorial Theory ‘08]

Motivated directly by network coding for multicast



Multiple Unicast

G=(V,E) and multiple pairs (s1, t1), (s2, t2), …, (sk, tk)

What is the coding advantage for multiple unicast?

• In directed graphs it can be Ω(k) [Harvey etal]

• In undirected graphs it is unknown! [Li-Li] 
conjecture states that there is no coding advantage



Multiple Unicast

What is the coding advantage for multiple unicast?

• Can be upper bounded by the gap between maximum 
concurrent flow and sparsest cut

• Extensive work in theoretical computer science 

• Many results known



Max Concurrent Flow and 
Min Sparsest Cut

fi(e) : flow for pair i on edge e

∑i fi(e) · c(e) for all e

val(fi) ¸ ¸Di for all i

max ¸ (max concurrent flow)
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Max Concurrent Flow and 
Min Sparsest Cut

fi(e) : flow for pair i on edge e

∑i fi(e) · c(e) for all e

val(fi) ¸ ¸Di for all i

max ¸ (max concurrent flow)

Sparsity of cut =  capacity of  cut / demand separated by cut

Max Concurrent Flow · Min Sparsity
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Known Flow-Cut Gap Results

Scenario Flow-Cut Gap

Undirected graphs Θ(log k)

Directed graphs O(k), O(n 11/23),         Ω(k), Ω(n1/7) 

Directed graphs, symmetric demands O(log k log log k), Ω(log k)



Symmetric Demands

G=(V,E) and multiple pairs (s1, t1), (s2, t2), …, (sk, tk)

si wants to communicate with ti and ti wants to 
communicate with si at the same rate

[Kamath-Kannan-Viswanath] showed that flow-cut gap 
translates to upper bound on coding advantage. Using 
GNS cuts



Challenging Questions

How to understand capacity?

• [Li-Li] conjecture and understanding gap between 
flow and capacity in undirected graphs

• Can we obtain a slightly non-trivial approximation to 
capacity in directed graphs? 



Capacity of  Wireless 
Networks



Capacity of  wireless networks

Major issues to deal with:

• interference due to  broadcast nature of  medium

• noise



Capacity of  wireless networks

Understand/model/approximate wireless networks via 
wireline networks

• Linear deterministic networks [Avestimehr-Diggavi-
Tse’09]
• Unicast/multicast (single source). Connection to 

polylinking systems and submodular flows [Amaudruz-
Fragouli’09, Sadegh Tabatabaei Yazdi-Savari’11, 
Goemans-Iwata-Zenklusen’09]

• Polymatroidal networks [Kannan-Viswanath’11]
• Multiple unicast. 



Key to Success

Flow-cut gap results for polymatroidal networks

• Originally studied by [Edmonds-Giles] (submodular
flows) and [Lawler-Martel] for single-commodity

• More recently for multicommodity [C-Kannan-Raja-
Viswanath’12] motivated by questions from models 
of  [Avestimehr-Diggavi-Tse’09] and several others



Polymatroidal Networks

Capacity of  edges incident to v jointly constrained by a 
polymatroid (monotone non-neg submodular set func)

v

e1

e2

e3

e4

∑i 2 S c(ei) · f(S) for every S µ {1,2,3,4}



Directed Polymatroidal Networks

[Lawler-Martel’82, Hassin’79]

Directed graph G=(V,E)

For each node v two polymatroids
• ½v

- with ground set ±- (v)

• ½v
+ with ground set ±+(v)

∑ e 2 S f(e) · ½v
- (S)  for all S µ ±-(v)

∑ e 2 S f(e) · ½v
+ (S)  for all S µ ±+(v)

v



s-t flow

Flow from s to t: “standard flow” with polymatroidal
capacity constraints
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What is the cap. of  a cut?

Assign each edge (a,b) of  cut to either a or b

Value = sum of  function values on assigned sets

Optimize over all assignments

min{1+1+1, 1.2+1, 1.6+1}
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Maxflow-Mincut Theorem

[Lawler-Martel’82, Hassin’79]

Theorem: In a directed polymatroidal network the max s-t
flow is equal to the min s-t cut value.

Model equivalent to submodular-flow model of[Edmonds-
Giles’77] that can derive as special cases

• polymatroid intersection theorem

• maxflow-mincut in standard network flows

• Lucchesi-Younger theorem



Multi-commodity Flows

Polymatroidal network G=(V,E)

k pairs (s1,t1),...,(sk,tk)

Multi-commodity flow:  

• fi is si-ti flow

• f(e) = ∑i fi(e) is total flow on e

• flows on edges constrained by polymatroid
constraints at nodes



Multi-commodity Cuts

Polymatroidal network G=(V,E)

k pairs (s1,t1),...,(sk,tk)

Multicut: set of  edges that separates all pairs

Sparsity of cut: cost of  cut/demand separated by cut

Cost of  cut: as defined earlier via optimization



Main Result

[C-Kannan-Raja-Viswanath’12]

Flow-cut gaps for polymatroidal networks essentially 
match the known bounds for standard networks

Scenario Flow-Cut Gap

Undirected graphs Θ(log k)

Directed graphs O(k), O(n 11/23),         Ω(k), Ω(n1/7) 

Directed graphs, symmetric demands O(log k log log k), Ω(log k)



Implications for network 
information theory

Results on polymatroidal networks and special cases 
have provided approximate understanding of  the 
capacity of  a class of  wireless networks



Implications for 
Combinatorial Optimization

• Motived study of  multicommodity polymatroidal
networks

• Resulted in new results and new proofs of  old results

• Several important technical connections bridging 
submodular optimization and embeddings
techniques for flow-cut gap results

Additional work [Lee-Mohorrrami-Mendel’14] 
motivated by questions from polymatroidal networks



Networks with Delay

[Wang-Chen’14] Coding provides constant factor 
advantage over routing even for unicast!

How much?



Networks with Delay

[Wang-Chen’14] Coding provides constant factor 
advantage over routing even for unicast!

How much?

[C-Kamath-Kannan-Viswanath’15] At most O(log D) 

See Sudeep’s talk later in workshop



Connections to Combinatorial 
Optimization

Work in [C-Kamath-Kannan-Viswanath’15] raised a 
very nice new flow-cut gap problem

“Triangle Cast”



Triangle Cast

Given G=(V,E) terminals s1, s2, …, sk and t1, t2, …, tk

communication pattern is si to tj for all j ≥ i

s1 t1

s2

s3

s4

t2

t3

t4



Connections to Combinatorial 
Optimization

Work in [C-Kamath-Kannan-Viswanath’15] raised a 
very nice new flow-cut gap problem

“Triangle Cast”

• Connected to several classical problems such 
multiway cut, multicut and feedback problems

• Seems to require new techniques to solve

• Inspired several new results [C-Madan’15]



Part 2

Algebraic algorithms for connectivity



Graph Connectivity

• Given a simple directed graph G=(V,E) and two nodes 
s and t, compute the maximum number of  edge 
disjoint paths between s and t.

• Equivalently the min s-t cut value

Fundamental algorithmic problem in combinatorial 
optimization

45



Known Algorithms

• [Even-Tarjan’75] O(min{m1.5, n2/3m}) run-time, 
where n is the number of  vertices and m is the 
number of  edges.

Recent breakthroughs (ignoring log factor)

• [Madry’13] O(m10/7)

• [Sidford-Lee’14] O(mn1/2)



All Pairs Edge Connectivities 

• Given simple directed graph G=(V,E) compute s-t
edge connectivity for each pair (s,t) in V x V

• Not known how to do faster than computing each 
pair separately. Even from a single source s to all v

• Undirected graphs have much more structure. Can 
compute all pairs in O(mn polylog(n)) time



New Algebraic Approach

[Cheung-Kwok-Lau-Leung’11]

Faster algorithms for connectivity via 

“random network coding”



Next few slides from Lap Chi Lau: used with his 
permission



Random Linear Network 
Coding

• Random linear network coding is oblivious to 
network

• [Jaggi] observed that edge connectivity from the 
source can be determined by looking at the rank of  
the receiver’s vectors.  Restricted to directed acyclic 
graphs.

• For general graphs, network coding is more 
complicated as it requires convolution codes.

50



S

New Algebraic Formulation

Very similar to random linear network coding



S

New Algebraic Formulation

(1) Source sends out linearly independent vectors.

If the source has outdegree d, then
the vectors are d-dimensional.
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New Algebraic Formulation

(2) Pick random coefficients for each pair of  adjacent edges 
(uv, vw)

Random coefficients

Field size = 11



S

New Algebraic Formulation
(3) Require each vector to be a linear combination of  its 

incoming vectors.

Random coefficients

Field size = 11
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New Algebraic Formulation

Random coefficients

Field size = 11
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(3) Require each vector to be a linear combination of  its 
incoming vectors.



S

New Algebraic Formulation

(4) Compute vectors that satisfy all the equations.

Random coefficients

Field size = 11
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Theorem: Field size is poly(m), with high probability for 
every vertex v, the rank of  incoming vectors to v is equal to 
the edge connectivity from s to v
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e.g. s-t connectivity = 
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How to compute those vectors?



S
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How to compute those vectors?



Algorithmic Results

• Advantages: 
• compute edge-connectivity from one source to all 

vertices at the same time 
• Allow use of  fast algorithms from linear algebra

• Faster Algorithms
• Single source / All pairs edge connectivities
• General / Acyclic / Planar graphs
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General Directed Graphs
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Multiple Sources
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Outgoing edges of vi Connectivit
y
V3 – V1

V4 – V2

All-Pairs Edge-Connectivities
Incoming edges of vi



Encoding: O(mw) (to compute the inverse)

Decoding: O(m2nw-2) (to compute the rank of  all submatrices)

Overall: O(mw)

Best known (combinatorial) methods: O(min(n2.5m, m2n, n2m10/7))

Sparse graphs: m=O(n), algebraic algorithm takes O(nw) steps 
while other algorithms takes O(n3) steps. 

All-Pairs Edge-Connectivity

64



New Questions

• Is there some combinatorial structure that the 
algebraic structure is exploiting that we have not 
found yet?

• Can we obtain algorithms without using fast matrix 
multiplication?

• Does the algebraic methodology work for other 
connectivity problems?



Benefits to Combinatorial 
Optimization

My perspective/experience

• New applications of  existing results

• New problems

• New algorithms for classical problems

• Challenging open problems

• Interdisciplinary collaborations/friendships



Personal Benefits

• Collaborations with ECE/Info theory. Christina 
Fragouli, Emina Soljanin, Serap Savari, Pramod
Viswanath, Sreeram Kannan, Adnan Raja, Sudeep
Kamath …

• Conversations with several CS researchers on interrelated 
topics

• Several papers. Direct and indirect!

• Made me understand my own area better!

• Friendships and fun



Thanks!


