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Part I
Coding with Constraints: A Quick Survey
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Coding with Constraints: Example

= ¢1(x1,x7)

= Cp(x1,%3)

= c3(x2)

= C4(x2,x3)

= ¢5(x1,%3)

Linear code: (cq,Cy, C3,C4,Cs) = (Xq,%5,%3)G
where the generator matrix G is

2?7 0 0 7
G=<? o ? 7 0)
o ?» 0 ? 7



Coding with Constraints: Main Problem

Given the constraints
Cj = Cj({xi:i S C]}), C] C {1,2, ,k}
how to construct codes that

— achieve the optimal minimum distance
— over small field size g = poly(n)



Coding with Constraints: Main Problem

Given the constraints
Cj = Cj({xi:i S C]}), C] C {1,2, ,k}
how to construct codes that

— achieve the optimal minimum distance
— over small field size g = poly(n)

? 7 ?
G = <? 0 0)
0 ? ?
how to replace “?"-entries by elements of F;, (¢ = poly(n)) so that G
generate a code with optimal distance

Linear case: given

0 0
? 7
0 ?



Coding with Constraints: Upper Bound

Upper Bound (Halbawi-Thill-Hassibi’15, Song-Dau-Yuen’15)
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Coding with Constraints: Upper Bound

Upper Bound (Halbawi-Thill-Hassibi’15, Song-Dau-Yuen’15)

d< dmax =1+ @ilgg?..,k}(luiEI Ril _ |I|)

where R; = {j:i € C;}

Properties
— dmax Can be found in time poly(n)

— codes with d = d,,4, always exists over fields of size = ( d T_l 1)

Question of interest: how about fields of size poly(n)?
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Common Technique: Reed-Solomon (sub-) code

= ¢1(xq,X2)

= ¢y(xq,x3)

= c3(x2)

= C4(x3,x3)

= C5(X1,X3)

(op)]

I
~~
O N
~ O
o N O

)
-~ O
~__—



Coding with Constraints: Review

Common Technique: Reed-Solomon (sub-) code

= ¢1(xq,X2)

= ¢y(xq,x3)

= c3(x2)

= C4(x3,x3)

= C5(X1,X3)




Coding with Constraints: Review

Common Technique: Reed-Solomon (sub-) code
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Coding with Constraints: Review

Common Technique: Reed-Solomon (sub-) code

a1 Gy A3 Ay Ug

7?2 0 0 7 fila1) fi(az) 0 0 fi(as)
G = (? 0 ? ? O) = fa(ay) 0 f2(az)  fa(as) 0
o ? 0 7 7 0 f3(az) 0 f3(ay)  fz(as)

Difficulty: G may not be full rank



Part II:

Joint Design of Different MDS Codes
(joint work with H. Kiah, W. Song, and C. Yuen)



MDS Codes for Distributed Storage
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Question of Interest

 If two (or more) independent DSS share some common data, can
we jointly design the corresponding MDS codes to get a better
overall failure protection?
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overall failure protection?

( fiocalsibiode i T T T T T TTTTTS

| |

I@ —X1+XZ+X3 [
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Question of Interest

If two (or more) independent DSS share some common data, can

we jointly design the corresponding MDS codes to get a better
overall failure protection?

/ (" |'local subcode1 ~ _ _ _ ~_ _~ ~ ~ -~ - °%

| -
=x1+x;+x
|@ - 1 2 3

Tolerate 1 y ,@ 23] H — x; + 2%, + 4%
node failure : MDS = x; + 3%, + 2x3
I@ =x1+4‘xZ+ZX3
NG :
Local distance d; = 2
ToIerate3 [=L=I=S§=d=21=============:
. ocal Subcode _
node failures =Xz T X3+ X4 + X5

=Xy + 2x3 +4x4 + x5

[6,4] = Xy + 3x3 + 2x4 + 65

Tolerate 2 <
node failures

= Xy + 4x3 + 2x4 + X5

= Xy + 5x3 + 4x4 + 6X5

K | = X, + 6x3 + x4 + 6X5

\ ILocaI distanced, = 3 ]

{7 = p =20UelsIp wnwiulw |eqo|o

Code has minimum distance d: tolerate d — 1 node failures

29



Upper Bound for Global Minimum Distance

For linear code
(c1,Cy, vy C10) = (X1, X9, oo, X6) G
where
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Upper Bound for Global Minimum Distance

For linear code
(c1,Cy, vy C10) = (X1, X9, oo, X6) G

where -
s3vosf? 2 2 2)lo 0 0 0 0 o
7 7 7 20?2 2 72 27 7 2
G=Il2 2 2 22 2 2 2 2 2
oo o0 0 7 7 7 7 7 7
0 0 0 27 7 7 7 7l

OI?

Goal: replace “?”-entries with F,-elements so that

— two local subcodes are MDS (additional requirement)
— the global code has optimal distance (same as coding with constraints)

Same cut-set bound apply & codes over large fields achieve this bound

d < dmax =1+ @ilrgr}{llr’l_wk}(luiEI Ril — |I|)



Upper Bound for Global Minimum Distance:
Two Local Subcodes

* d < dmax =1 +t + min{nl - kl,nz - kz}
* t=#{common x;}




Upper Bound for Global Minimum Distance:
Two Local Subcodes

* d < dmax =1 +t + min{nl - kl,nz - kz}
* t=#{common x;}
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t = Xy, X3} = _==================IC
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In this example: d < 1 + 2 + min{4 — 3,6 — 4} = 4 -> optimal code here
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Generator Matrix Representation
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Generator Matrix Representation

ocal Subcode 1
= X1 + X2 + X3

I

[

¢, | =x1 +2x, +4x I

[43] ! AL
[

|

I

NN

|
15t code: G; = {

MDS =x1 + 3x; + 2x3

:x1+4x2+2x3
. lBl !Eocal distance d; = 2 ,

OOO:

2"d code: G, =

[ENENTE O e L
NN ISl ] L
o Nfw Rk NWE

_ N

O A
o Ry =
I

V :Local Subcode 2 = Xy + X3 + X4 + Xg
|@ = Xy + 2x3 + 4x4 + X5
:@ [6,4] = x, + 3x3 + 2x4 + 6x5
| MDS = X, + 4x3 + 2x4 + X5
©
|




Generator Matrix Representation
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Easy Case: Two Codes Have Few Common
Data

- If few common data, I.e.
t <1+ max{n, —k,,n; —kq}

using two Vandermonde matrices as G4, G, : optimal minimum distance
- Finite field size required: |F;| = max{ny,n,}



Easy Case: Two Codes Have Few Common
Data

- If few common data, I.e.
t<1+ maX{nz — kz,nl — kl}

using two Vandermonde matrices as G4, G, : optimal minimum distance
- Finite field size required: |F;| = max{ny,n,}

More specifically, in this case, if

e Gq= [%] IS a nested MDS code: G4,U are generator matrices of
MDS codes

e G, = [g] Is a nested MDS code: G,,V are generator matrices of

MDS codes

then the global code achieves the optimal minimum distance (attains
the upper bound)



Harder Case: Two Codes Have the Same
Redundancy

- If same redundancy, i.e.

n—ky=n,—k,
we construct codes that have optimal global minimum distance
- Finite field size required: g > n = n; + n,

The construction uses the BCH bound



Two Codes Have the Same Redundancy: BCH
Bound

« F,: finite field of g elements
*  w: primitive element of F,, i.e. F, = {0,1, w, w*, w3, ...}

* Identify a vector ¢ = (cy, ..., ¢) € F* with the polynomial
c(X) = ¢ + X+ c3X% + - + cpx™ 1

BCH Bound: If every coded vector c satisfies
c(w') =0, foreveryi=0,1,..,6 — 1

l.e, they all have § consecutive powers of w as roots, then the code has
minimum distance d = § + 1
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Two Codes Have the Same Redundancy:

Construction
We construct the generator matrix of the optimal code. Example: F;
U O
G=|A B|-=
oV

k1:4‘

A
(2]
(O B
S
[y
=
(o) Ml (@]
v
L
Y,

1
Rows of G; has root > 1110 ) 12 1 e, =
1 = 40 ) 9 4 7 5 1 2 =
-> distance 2=1+1 5 1 6 1
5 1 6 1
5 1 6 1
- ) !




Two Codes Have the Same Redundancy:

Construction
We construct the generator matrix of the optimal code. Example: F;
U O
G=|A B|-=
oV

(5 1 6 1 D
k1:4 5 1 6 1 \
Rows of (1 has root > 11 10) 12 1 Ik _c
1:0)0 v 9 1 2

-> distance 2=1+1

Rows of G, has root
1=w"
-> distance 2=1+1




Two Codes Have the Same Redundancy:

Construction
We construct the generator matrix of the optimal code. Example: F;
u O
G=|4 B|= Rows of G has roots
oV w®, w, w?
) ng =5 R -> distance 4=3+1
t(f5 1 6 1 )
kl — 4‘ 5 1 6 1 \
Rows of (1 has root 5 1110 ) 12 1 Ik _c
1=0w° ! 9 4 7 5 1 2 =
-> distance 2=1+1 5 1 6 1
5 1 6 1
5 1 6 1
- s
Tl1 - 6

Rows of G, has root
1=w"
-> distance 2=1+1




Two Codes Have the Same Redundancy:
Construction

Summary of this construction

 Rows: treated as polynomial having certain roots

Solving systems of linear equations to determine rows

BCH bound — global code & local codes have desired distances

(5

1 6 1 N
5 1 6 1

5 11 10 12 1

9 4 7 5 1

5 1 6 1

5 1 6 1
5 1 6 1
.




Conclusions

What we have done

* Introduce a new coding problem: how to jointly design 2 (or more)
MDS codes to have better overall failure tolerance

« Construct optimal codes for two cases
— There are few common data
— Two codes have the same amount of redundancy
Open Questions
— Codes over small field size for 2 local codes: n; — k; #n, — k,
— Codes over small field size for more than two local codes



