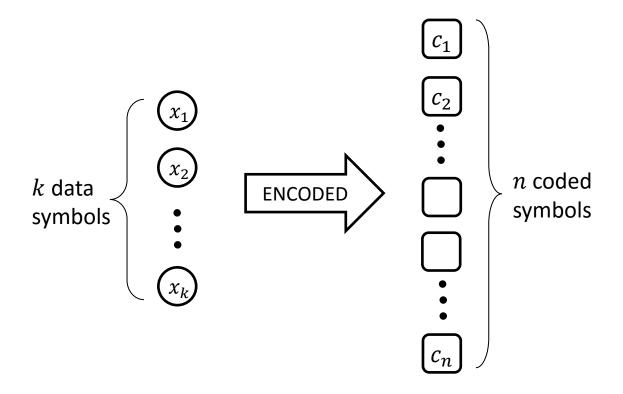
Coding with Constraints: Different Flavors

Hoang Dau
University of Illinois at Urbana-Champaign
Email: hoangdau@uiuc.edu

DIMACS Workshop on Network Coding: the Next 15 Years Rutgers University, NJ, 2015

Part I Coding with Constraints: A Quick Survey

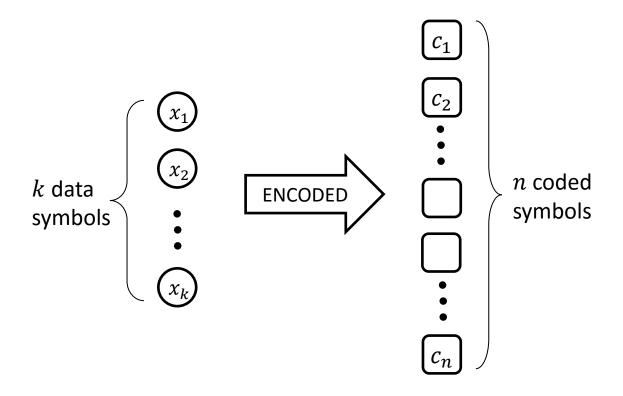
Coding with Constraints: Definition



CONVENTIONAL CODE

$$c_i = c_i(x_1, x_2, \dots, x_k)$$

Coding with Constraints: Definition



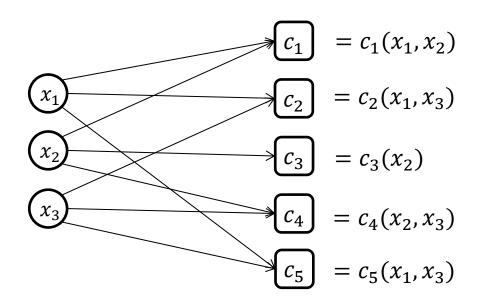
CONVENTIONAL CODE

$$c_j = c_j(x_1, x_2, \dots, x_k)$$

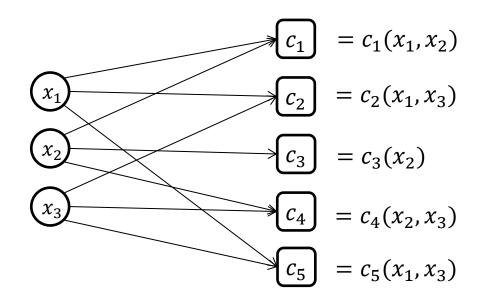
CODE WITH CONSTRAINTS

$$c_i = c_i(\{x_i : i \in C_i\}), C_i \subseteq \{1, 2, ..., k\}$$

Coding with Constraints: Example



Coding with Constraints: Example



Linear code: $(c_1, c_2, c_3, c_4, c_5) = (x_1, x_2, x_3) \boldsymbol{G}$ where the generator matrix \boldsymbol{G} is

$$\mathbf{G} = \begin{pmatrix} ? & ? & 0 & 0 & ? \\ ? & 0 & ? & ? & 0 \\ 0 & ? & 0 & ? & ? \end{pmatrix}$$

Coding with Constraints: Main Problem

Given the constraints

$$c_j = c_j(\{x_i : i \in C_j\}), \quad C_j \subseteq \{1, 2, \dots, k\}$$

how to construct codes that

- achieve the optimal minimum distance
- over small field size $q \approx poly(n)$

Coding with Constraints: Main Problem

Given the constraints

$$c_i = c_i(\{x_i : i \in C_i\}), \quad C_i \subseteq \{1, 2, \dots, k\}$$

how to construct codes that

- achieve the optimal minimum distance
- over small field size $q \approx \text{poly}(n)$

Linear case: given

$$\mathbf{G} = \begin{pmatrix} ? & ? & 0 & 0 & ? \\ ? & 0 & ? & ? & 0 \\ 0 & ? & 0 & ? & ? \end{pmatrix}$$

how to replace "?"-entries by elements of F_q ($q \approx \text{poly}(n)$) so that G generate a code with optimal distance

Coding with Constraints: Upper Bound

Upper Bound (Halbawi-Thill-Hassibi'15, Song-Dau-Yuen'15) $d \le d_{max} = 1 + \min_{\emptyset \neq I \subseteq \{1,\dots,k\}} (|\cup_{i \in I} R_i| - |I|)$ where $R_i = \{j: i \in C_i\}$

Coding with Constraints: Upper Bound

Upper Bound (Halbawi-Thill-Hassibi'15, Song-Dau-Yuen'15) $d < d = 1 + \min_{n \in \mathbb{N}} (|u|, P_n| - |U|)$

$$d \le d_{max} = 1 + \min_{\emptyset \ne I \subseteq \{1, \dots, k\}} (|\cup_{i \in I} R_i| - |I|)$$

where $R_i = \{j: i \in C_j\}$

Properties

- d_{max} can be found in time poly(n)
- codes with $d = d_{max}$ always exists over fields of size $\approx \binom{n}{d-1}$

Coding with Constraints: Upper Bound

Upper Bound (Halbawi-Thill-Hassibi'15, Song-Dau-Yuen'15) $d \leq d_{max} = 1 + \min_{\emptyset \neq I \subseteq \{1,\dots,k\}} (|\cup_{i \in I} R_i| - |I|)$ where $R_i = \{j : i \in C_i\}$

Properties

- d_{max} can be found in time poly(n)
- codes with $d = d_{max}$ always exists over fields of size $\approx \binom{n}{d-1}$

Question of interest: how about fields of size poly(n)?

(Small field)

MDS Case: $d_{max} = n - k + 1$

 Optimal codes exist in a few special cases (Halbawi-Ho-Yao-Duursma'14, Dau-Song-Yuen'14, Yan-Sprintson-Zelenko'14)

(Small field)

MDS Case: $d_{max} = n - k + 1$

- Optimal codes exist in a few special cases (Halbawi-Ho-Yao-Duursma'14, Dau-Song-Yuen'14, Yan-Sprintson-Zelenko'14)
 - $k \le 4$ (every n)

(Small field)

MDS Case: $d_{max} = n - k + 1$

- Optimal codes exist in a few special cases (Halbawi-Ho-Yao-Duursma'14, Dau-Song-Yuen'14, Yan-Sprintson-Zelenko'14)
 - $k \le 4$ (every n)
 - rows of G partitioned into ≤ 3 groups, each has same "?"-pattern

(Small field)

MDS Case: $d_{max} = n - k + 1$

- Optimal codes exist in a few special cases (Halbawi-Ho-Yao-Duursma'14, Dau-Song-Yuen'14, Yan-Sprintson-Zelenko'14)
 - $k \le 4$ (every n)
 - rows of G partitioned into ≤ 3 groups, each has same "?"-pattern
 - rows have k-1 zeros & 2 different rows share ≤ 1 common zeros

(Small field)

MDS Case: $d_{max} = n - k + 1$

- Optimal codes exist in a few special cases (Halbawi-Ho-Yao-Duursma'14, Dau-Song-Yuen'14, Yan-Sprintson-Zelenko'14)
 - $k \le 4$ (every n)
 - rows of G partitioned into ≤ 3 groups, each has same "?"-pattern
 - rows have k-1 zeros & 2 different rows share ≤ 1 common zeros

General Case (Halbawi-Thill-Hassibi'15): $d_{max} \le n - k + 1$

(Small field)

MDS Case: $d_{max} = n - k + 1$

- Optimal codes exist in a few special cases (Halbawi-Ho-Yao-Duursma'14, Dau-Song-Yuen'14, Yan-Sprintson-Zelenko'14)
 - $k \le 4$ (every n)
 - rows of G partitioned into ≤ 3 groups, each has same "?"-pattern
 - rows have k-1 zeros & 2 different rows share ≤ 1 common zeros

General Case (Halbawi-Thill-Hassibi'15): $d_{max} \le n - k + 1$

- Optimal codes exist if there are $\geq d_{max} - 1$ indices j's where $|C_j| = k$

(Small field)

MDS Case: $d_{max} = n - k + 1$

- Optimal codes exist in a few special cases (Halbawi-Ho-Yao-Duursma'14, Dau-Song-Yuen'14, Yan-Sprintson-Zelenko'14)
 - $k \le 4$ (every n)
 - rows of G partitioned into ≤ 3 groups, each has same "?"-pattern
 - rows have k-1 zeros & 2 different rows share ≤ 1 common zeros

General Case (Halbawi-Thill-Hassibi'15): $d_{max} \le n - k + 1$

- Optimal codes exist if there are $\geq d_{max} 1$ indices j's where $|C_j| = k$
- Optimal systematic codes always exists (smaller bound $d_{sys} \leq d_{max}$)

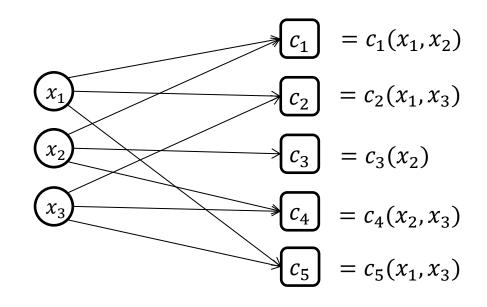
(Small field)

MDS Case: $d_{max} = n - k + 1$

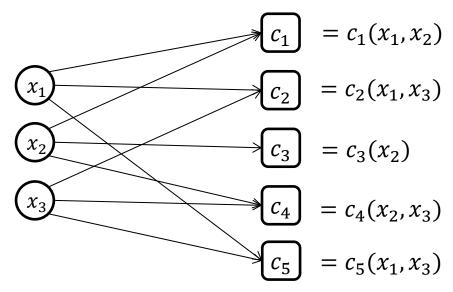
- Optimal codes exist in a few special cases (Halbawi-Ho-Yao-Duursma'14, Dau-Song-Yuen'14, Yan-Sprintson-Zelenko'14)
 - $k \le 4$ (every n)
 - rows of G partitioned into ≤ 3 groups, each has same "?"-pattern
 - rows have k-1 zeros & 2 different rows share ≤ 1 common zeros

General Case (Halbawi-Thill-Hassibi'15): $d_{max} \le n - k + 1$

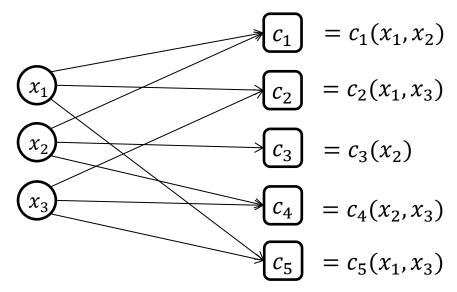
- Optimal codes exist if there are $\geq d_{max} 1$ indices j's where $|C_j| = k$
- Optimal systematic codes always exists (smaller bound $d_{sys} \leq d_{max}$)



$$\mathbf{G} = \begin{pmatrix} ? & ? & 0 & 0 & ? \\ ? & 0 & ? & ? & 0 \\ 0 & ? & 0 & ? & ? \end{pmatrix}$$

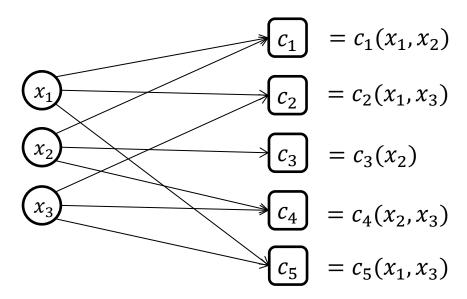


$$\mathbf{G} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 \\ ? & ? & 0 & 0 & ? \\ ? & 0 & ? & ? & 0 \\ 0 & ? & 0 & ? & ? \end{pmatrix}$$



$$\mathbf{G} = \begin{pmatrix} ? & ? & 0 & 0 & ? \\ ? & 0 & ? & ? & 0 \\ 0 & ? & 0 & ? & ? \end{pmatrix} = \begin{pmatrix} f_1(\alpha_1) & f_1(\alpha_2) & 0 & 0 & f_1(\alpha_5) \\ f_2(\alpha_1) & 0 & f_2(\alpha_3) & f_2(\alpha_4) & 0 \\ 0 & f_3(\alpha_2) & 0 & f_3(\alpha_4) & f_3(\alpha_5) \end{pmatrix}$$

Common Technique: Reed-Solomon (sub-) code



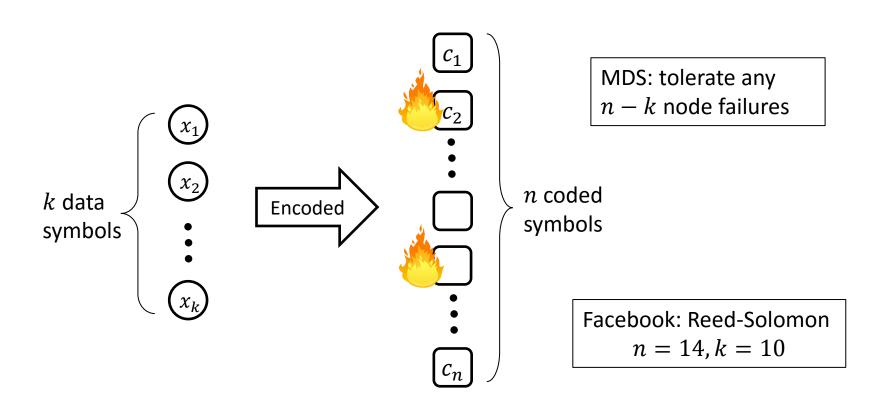
$$\mathbf{G} = \begin{pmatrix} ? & ? & 0 & 0 & ? \\ ? & 0 & ? & ? & 0 \\ 0 & ? & 0 & ? & ? \end{pmatrix} = \begin{pmatrix} f_1(\alpha_1) & f_1(\alpha_2) & 0 & 0 & f_1(\alpha_5) \\ f_2(\alpha_1) & 0 & f_2(\alpha_3) & f_2(\alpha_4) & 0 \\ 0 & f_3(\alpha_2) & 0 & f_3(\alpha_4) & f_3(\alpha_5) \end{pmatrix}$$

Difficulty: G may not be full rank

Part II: Joint Design of Different MDS Codes

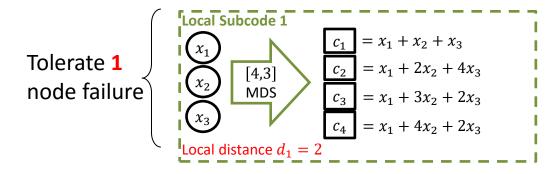
(joint work with H. Kiah, W. Song, and C. Yuen)

MDS Codes for Distributed Storage

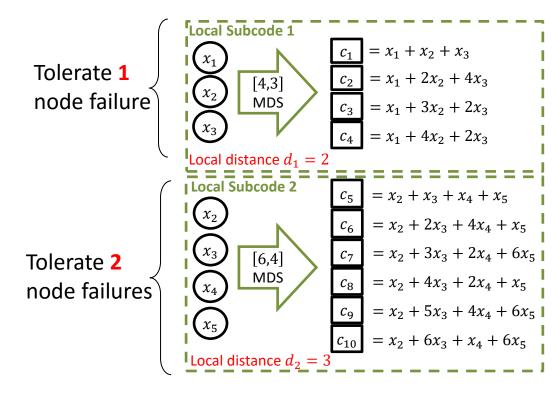


 If two (or more) independent DSS share some common data, can we jointly design the corresponding MDS codes to get a better overall failure protection?

 If two (or more) independent DSS share some common data, can we jointly design the corresponding MDS codes to get a better overall failure protection?

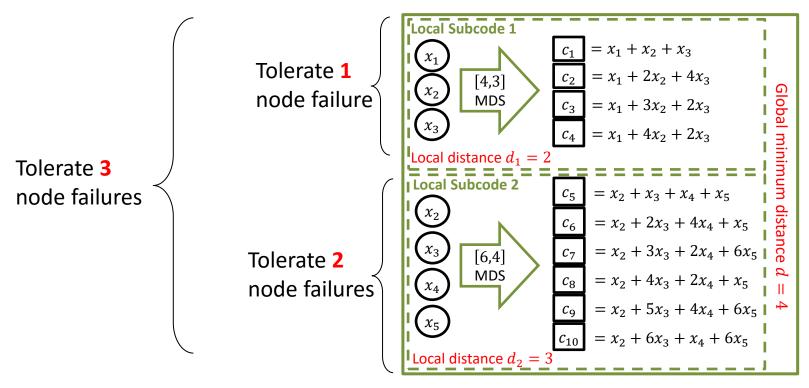


 If two (or more) independent DSS share some common data, can we jointly design the corresponding MDS codes to get a better overall failure protection?



Code has minimum distance d: tolerate d-1 node failures

 If two (or more) independent DSS share some common data, can we jointly design the corresponding MDS codes to get a better overall failure protection?



Code has minimum distance d: tolerate d-1 node failures

For linear code

$$(c_1, c_2, ..., c_{10}) = (x_1, x_2, ..., x_6) G$$

where

For linear code

$$(c_1, c_2, ..., c_{10}) = (x_1, x_2, ..., x_6) G$$

where

Goal: replace "?"-entries with F_q -elements so that

For linear code

$$(c_1, c_2, ..., c_{10}) = (x_1, x_2, ..., x_6) G$$

where

Goal: replace "?"-entries with F_q -elements so that

two local subcodes are MDS (additional requirement)

For linear code

$$(c_1, c_2, ..., c_{10}) = (x_1, x_2, ..., x_6)$$
G

where

Goal: replace "?"-entries with F_q -elements so that

- two local subcodes are MDS (additional requirement)
- the global code has optimal distance (same as coding with constraints)

For linear code

$$(c_1, c_2, \dots, c_{10}) = (x_1, x_2, \dots, x_6) G$$

where

Goal: replace "?"-entries with F_q -elements so that

- two local subcodes are MDS (additional requirement)
- the global code has optimal distance (same as coding with constraints)

Same cut-set bound apply & codes over large fields achieve this bound

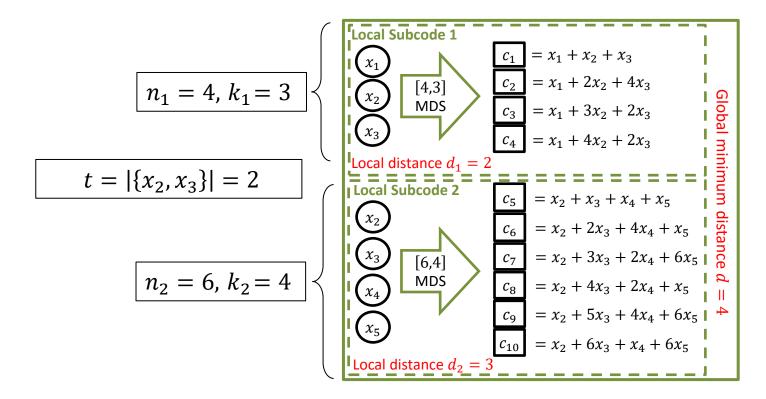
$$d \le d_{max} = 1 + \min_{\emptyset \ne I \subseteq \{1, \dots, k\}} (|\cup_{i \in I} R_i| - |I|)$$

Upper Bound for Global Minimum Distance: Two Local Subcodes

- $d \le d_{max} = 1 + t + \min\{n_1 k_1, n_2 k_2\}$ $t = \#\{\text{common } x_i\}$

Upper Bound for Global Minimum Distance: Two Local Subcodes

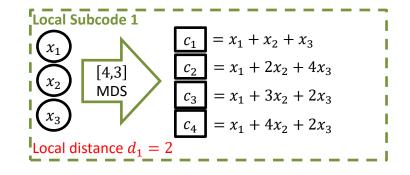
- $d \le d_{max} = 1 + t + \min\{n_1 k_1, n_2 k_2\}$
- $t = \#\{\text{common } x_i\}$



In this example: $d \le 1 + 2 + \min\{4 - 3, 6 - 4\} = 4$ -> optimal code here

Generator Matrix Representation

1st code:
$$G_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 2 \end{bmatrix} = \begin{bmatrix} \underline{u} \\ \underline{A} \end{bmatrix}$$

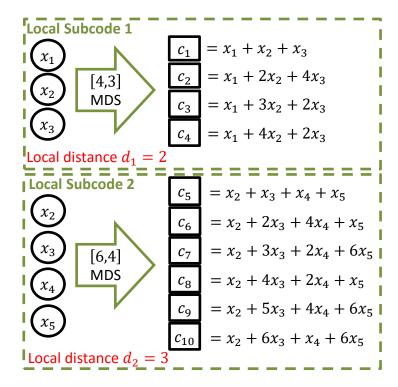


Generator Matrix Representation

1st code:
$$G_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{bmatrix} = \begin{bmatrix} \underline{u} \\ \underline{A} \end{bmatrix}$$

$$2^{\text{nd}} \text{ code: } G_2 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 4 & 2 & 2 & 4 & 1 \\ 1 & 1 & 6 & 1 & 6 & 6 \end{bmatrix} = \begin{bmatrix} B \\ V \end{bmatrix}$$

$$\begin{bmatrix} x_3 \\ x_3 \\ x_4 \\ x_1 + 4x_2 + 2x_3 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_1 + 4x_2 + 2x_3 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x_8$$

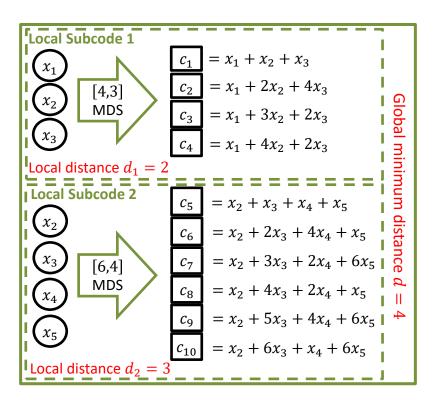


Generator Matrix Representation

1st code:
$$G_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{bmatrix} = \begin{bmatrix} \underline{v} \\ \underline{A} \end{bmatrix}$$

2nd code:
$$G_2 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 2 & 2 & 4 & 1 \\ 1 & 1 & 6 & 1 & 6 & 6 \end{bmatrix} = \begin{bmatrix} \underline{B} \\ \overline{V} \end{bmatrix}$$

Global code:
$$G = \begin{bmatrix} U & O \\ A & B \\ O & V \end{bmatrix}$$



Easy Case: Two Codes Have Few Common Data

- If few common data, i.e.

$$t \le 1 + \max\{n_2 - k_2, n_1 - k_1\}$$

using two Vandermonde matrices as G_1 , G_2 : optimal minimum distance

- Finite field size required: $|F_q| \ge \max\{n_1, n_2\}$

Easy Case: Two Codes Have Few Common Data

- If few common data, i.e.

$$t \le 1 + \max\{n_2 - k_2, n_1 - k_1\}$$

using two Vandermonde matrices as G_1 , G_2 : optimal minimum distance

- Finite field size required: $|F_q| \ge \max\{n_1, n_2\}$

More specifically, in this case, if

- $G_1 = \left[\frac{U}{A}\right]$ is a nested MDS code: G_1 , U are generator matrices of MDS codes
- $G_2 = \left[\frac{B}{V}\right]$ is a nested MDS code: G_2 , V are generator matrices of MDS codes

then the global code achieves the optimal minimum distance (attains the upper bound)

Harder Case: Two Codes Have the Same Redundancy

- If same redundancy, i.e.

$$n_1 - k_1 = n_2 - k_2$$

we construct codes that have optimal global minimum distance

- Finite field size required: $q > n = n_1 + n_2$

The construction uses the BCH bound

Two Codes Have the Same Redundancy: BCH Bound

- F_q : finite field of q elements
- ω : primitive element of F_q , i.e. $F_q = \{0,1,\omega,\omega^2,\omega^3,...\}$
- Identify a vector $c=(c_1,\ldots,c_n)\in F_q^n$ with the polynomial $c(\mathbf{x})=c_1+c_2\mathbf{x}+c_3\mathbf{x}^2+\cdots+c_n\mathbf{x}^{n-1}$

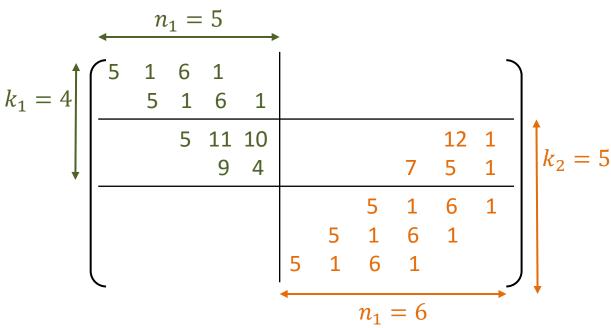
BCH Bound: If every coded vector *c* satisfies

$$c(\omega^i) = 0$$
, for every $i = 0, 1, ..., \delta - 1$

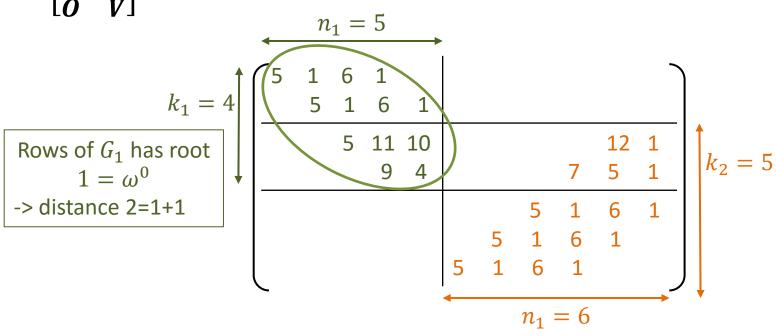
i.e, they all have δ consecutive powers of ω as roots, then the code has minimum distance $d \geq \delta + 1$

$$G = \begin{bmatrix} U & O \\ A & B \\ O & V \end{bmatrix} =$$

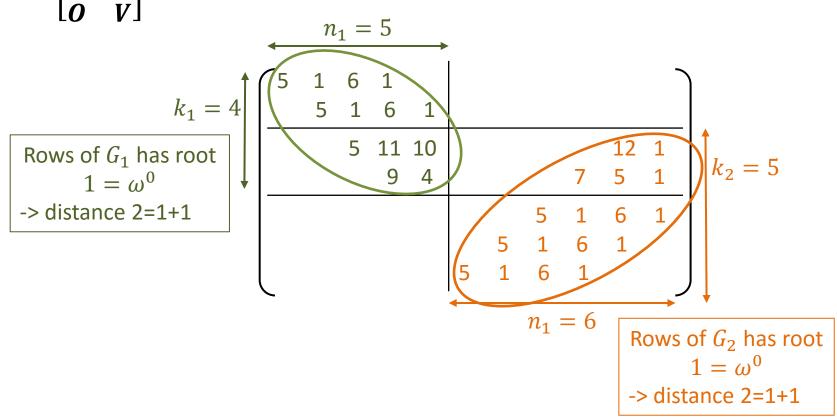
$$G = \begin{bmatrix} U & O \\ A & B \\ O & V \end{bmatrix} =$$

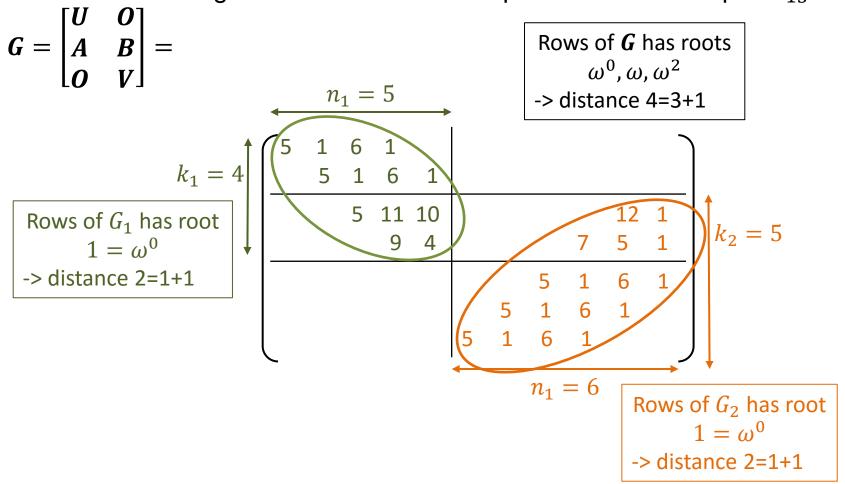


$$G = \begin{bmatrix} U & O \\ A & B \\ O & V \end{bmatrix} =$$



$$G = \begin{bmatrix} U & O \\ A & B \\ O & V \end{bmatrix} =$$





Summary of this construction

- Rows: treated as polynomial having certain roots
- Solving systems of linear equations to determine rows
- BCH bound → global code & local codes have desired distances

5	6 1	1 6	1						
	5	11	10					12	1
		9	4				7	5	1
						5	1	6	1
					5	1	6	1	
				5	1	6	1		

Conclusions

What we have done

- Introduce a new coding problem: how to jointly design 2 (or more)
 MDS codes to have better overall failure tolerance
- Construct optimal codes for two cases
 - There are few common data
 - Two codes have the same amount of redundancy

Open Questions

- Codes over small field size for 2 local codes: $n_1 k_1 \neq n_2 k_2$
- Codes over small field size for more than two local codes