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The gap

Fundamental questions:

i. What is the best achievable performance?

ii. How to communicate over such networks?

Huge gap between theoretically analyzable and practical networks

Receiver

Transmitter

visualization of the various routes through

a portion of the Internet from “The Opte Project”.
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This talk

Bridge the gap

Ï develop generic network analysis tools and techniques

Contributions:

Ï Noisy wireline networks:

o Separation of source-network coding and channel coding is optimal

Ï Wireless networks:

o Find outer and inner bounding noiseless networks.

Ï Noiseless wireline networks:

o HNS algorithm
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Noisy wired networks
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General wireline network

Example: Internet

Each user:

Ï sends data

Ï receives data from other users

Users observe dependent information
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Wireline network

Represented by a directed graph:

Ï nodes = users and relays

Ï directed edges = point-to-point
noisy channels

Node a:

Ï observes random process U (a)

Ï sources are dependent

Ï reconstructs a subset of processes
observed by other nodes

Ï lossy or lossless reconstructions

U (a)U (b)

≡
X Yp(y|x)
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Node operations

Node a observes U (a),L .

Encoding at Node a:

Ï t = 1,2, . . . ,n

Ï Map U (a),L and received signals
up to time t −1 to the inputs of
its outgoing channels

X j ,t = f j ,t (U (a),L ,Y t−1
1 ,Y t−1

2 )

a

U (a),L

Y t−1
1

Y t−1
2

X1,t

X2,t

X3,t
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Node operations

Decoding at Node a:

Ï At time t = n, maps U (a),L and its received signals to the
reconstruction blocks.

U (a),L

Y n
1

Y n
2

Ï Û (c→a),L : reconstruction of node a from the data at node c
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Performance measure

1. Rate:

Joint source-channel-network: κ, L
n =

source blocklength
channel blocklength

2. Reconstruction quality:

Ï U (a),L : observed block by node a

Ï Û (a→c),L : reconstruction of node c from the data at node a

i. Block-error probability (Lossless reconstruction):

P(U (a),L
6= Û (a→c),L )→ 0

ii. Expected average distortion (Lossy reconstruction):

E[d(U (a),L ,Û (a→c),L )] →D(a,c)
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Separation of source-network coding and channel-network coding

Does separation hurt the performance?

≡
X Yp(x|y)

C = max
p(x)

I (X ;Y )

bit-pipe of capacity C carries ⌊nC⌋ bits

error-free over n communications.

Theorem (SJ, Effros 2015)

Separation of source-network coding and channel coding

is optimal in a wireline network with dependent sources.
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Separation: wireline networks

Single source multicast:

[Borade 2002], [Song, Yeung, Cai 2006]

Independent sources with lossless
reconstructions:

[Hassibi, Shadbakht 2007] [Koetter, Effros, Medard 2009]

multi- demands dependent lossless lossy continuous

source sources channels

[Borade 2002][Song et al. 2006] no multicast no yes no no
[Hassibi et al. 2007] [Koetter et al. 2009] yes arbitrary no yes no yes
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Results

1. Separation of source-network coding and channel coding in wireline network
with lossy and lossless reconstructions

2. Equivalence of zero-distortion and lossless reconstruction in general
memoryless networks

multi- demands dependent lossless lossy continuous

source sources channels

[Borade 2002] [Song et al. 2006] no multicast no yes no no
[Koetter et al. 2009] yes arbitrary no yes no yes

[SJ et al. 2015] yes arbitrary yes yes yes yes
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Lossy reconstructions: Proof idea

Challenge: optimal region in not known!

Approach: any performance achievable on original network is achievable on
the network of bit-pipes and vice versa.

Main ingredients:

Ï stacked networks

Ï channel simulation
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Stacked network

Notation:
Ï Rate κ= L

n =
source blocklength

channel blocklength

Ï N : original network

Defintions:
Ï D(κ,N ): set achievable distortions on N

Ï N : m-fold stacked version consisting of m copies of the original network

[Koetter et al. 2009]

Theorem (SJ, Effros 2015)

D(κ,N ) =D(κ,N )

U(a),L
U(b),L

U
(a),2L
L+1

U
(b),2L
L+1

U
(a),3L
2L+1

U
(b),3L
2L+1
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D(κ,N b) =D(κ,N )

N = original network

Nb = corresponding network of bit-pipes

D(κ,N )
?
=D(κ,Nb)

It is enough to show that

D(κ,N ) =D(κ,N b).

i. D(κ,N b) ⊂D(κ,N ): easy (channel coding across the layers)

ii. D(κ,N ) ⊂D(κ,N b )
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Proof of D(κ,N ) ⊂D(κ,N b)

Consider a noisy channel in N and its copies in N .

For t = 1, . . . ,n:PSfrag

X t Yt

X t ,1

X t ,2

X t ,m

Yt ,1

Yt ,2

Yt ,m

Define:

p̂[X m
t ,Y m

t ](x, y) =
|{i : (Xt ,i ,Yt ,i ) = (x, y)}|

m
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Proof of D(κ,N ) ⊂D(κ,N b)

In the original network:

E[d(U L ,Û L)]=
∑

x,y

E
[

d(U L ,Û L)
∣

∣(Xt ,Yt ) = (x, y)
]

P
(

(Xt ,Yt ) = (x, y)
)

.

Applying the same code across the layers in the m-fold stacked network:

E
[

d(U mL ,Û mL)
]

=
∑

x,y

E
[

d(U L ,Û L)
∣

∣(Xt ,Yt ) = (x, y)
]

E[p̂[X m
t ,Y m

t ](x, y)].

Goal:
pt (x)p(y |x) ≈ E[p̂[X m

t ,Y m
t ](x, y)]
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Channel simulation

Channel pY |X (y |x) with i.i.d. input X ∼ pX (x)

DMCX Y

Simulate this channel:

Dec.Enc.X m Y mmR bits

such that
‖pX ,Y − p̂[X m ,Y m ]‖TV

n→∞
−→ 0, a.s.

If R > I (X ;Y ), such family of codes exists.

Since R =C = maxp(x) I (X ;Y ), such a code always exists.
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Results

So far we proved separation of lossy source-network coding and channel
coding

multi- demands correlated lossless lossy continuous

source sources channels

[Borade 2002][Song et al. 2006] no multicast no yes no no
[Koetter et al. 2009] yes arbitrary no yes no yes

[SJ et al. 2010] yes arbitrary yes no yes no
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Lossless vs. D = 0

A family of lossless codes is also zero-distotion

Lossless reconstruction:
P(U L

6= Û L) → 0

For bounded distortion:

E[d(U L ,Û L)]≤ dmax P(U L
6= Û L) → 0

But:

A family of zero-distortion codes is not lossless

E[d(U L ,Û L)]→ 0,

only implies
{i : Ui 6= Ûi }

n
→ 0.
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Lossless vs. D = 0: point-to-point network

Dec.Enc.U L Û LLR

Lossless reconstruction:
R ≥ H(U )

Lossy reconstruction:

R(D) = min
p(û |u):E d(U ,Û )≤D

I (U ;Û )

Ï At D = 0:
R(0) = min

p(û|u):E[d(U ,Û )]=0
I (U ;Û ) = I (U ;U ) = H(U ).

Ï minimum required rates for lossless reconstruction and D = 0 coincide.
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Lossless vs. D = 0: multi-user network

Explicit characterization of the
rate-region is unknown for general
multi-user networks.

[Gu et al. 2010] proved the equivalence
of zero-distortion and lossless
reconstruction in error-free wireline
networks:

R(D)|D=0 =RL
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Lossless vs. D = 0: multi-user network

In a general memoryless network [wired or wireless]:

P(Y1, . . . ,Ym |X1, . . . , Xm )
→ Xi

← Yi

Theorem (SJ, Effros 2015)

If for any s ∈S , H(Us |US \s ) > 0, then achievability of

zero-distortion is equivalent to achievability of lossless

reconstruction.
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Recap

Wireline networks:

Proved that we can replace noisy point-to-point channels with error-free bit
pipes

≡
X Yp(x|y)

C = max
p(x)

I (X ;Y )

What about wireless networks?
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Noisy wireless networks
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Wireless networks

General multi-user network:

p(y1 , . . . , yn |x1, . . . ,xn )
← Xi

→ Yi

Separation of channel coding and source-network coding fails

The proof techniques can be extended to derive outer and inner bounding
networks of bit pipes

[Jalali, Effros 2011]
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Outer/inner bounding network

Network No is an outer bounding
network for N iff

D(κ,N ) ⊆D(κ,No )

Network Ni is an inner bounding
network for N iff

D(κ,Ni ) ⊆D(κ,N )

Di

Do D

Set of achievable distortions

on N , Ni , No
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Examples

Multiple access channel (MAC):

R
(l )
1

R
(l )
2

X1

X2

Yp(y|x1 , x2) R
(u)
1

R
(u)
2

Broadcast channel (BC):

R
(l )
1

R
(l )
2

Y1

Y2

X
p(y1 , y2 |x)

R
(u)
1

R
(u)
2
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Recap

wireline network ≡ network of bit pipes

network of bit pipes ⊂ wireless network ⊂ network of bit pipes
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Noiseless wired networks
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Noisy to noiseless

Acyclic noiseless network represented by a directed graph:

directed edge e = bit-pipe of capacity Ce

Question: What is the set of achievable rates?
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Network coding: known results

1. Multicast: each receiver reconstructs all sources

Ï Max-flow min-cut bound is tight

[Ahlswede et al. 2000]

Ï Linear codes suffices for achieving capacity

[Li, Yeung, Cai 2003] [Koetter,Medard 2003]

2. Non-multicast: arbitrary demands

Ï Linear codes are insufficient

[Dougherty, Freiling, Zeger, 2005]

Ï Capacity region is an open problem

[Yeung 2002] [Song, Yeung 2003] [Yeung, Cai, Li, Zhang 2005] [Yan, Yeing, Zhang 2007]
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Known bounds

Outer bounds:

Ï LP outer bound

i. Tightest outer bound implied by Shannon inequalities

ii. Software program: Information Theoretic Inequalities Prover (ITIP)

[Yeung 97]

Inner bounds:

Ï Optimizing over scalar or vector linear network codes

[Médard and Koetter 2003] [Chan 2007]

Main challenge:

Ï computational complexity of evaluating bounds is huge
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Topological operations (component modeling)

Goal:

Ï find a (inner or outer) bounding network of smaller size

Idea:

Ï topological simplifications using recursive network operations

Ï replace a component with another smaller and functionally equivalent
component

Functionally equivalent networks

For any input distribution, the two networks have identical set of
achievable functional demands.
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General procedure

Create a library of network simplification operations.

At each step:

i. Select a component in the network.

ii. Replace it by its equivalent or bounding component from the library.
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Example

Lemma

Let β, b′

b+b′ . If βa + (1−β)c ≤ d . networks N1

and N2 are equivalent.

a b

b’

c

d

x1 x2

y

Network N1

x1 x2

y

a b+b’

c

Network N2

1

1

1

1

1

1

1

2

[Ho, Effros, SJ 2010]
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Rerouting flow

ǫ

N N
′

+α1ǫ

+α2ǫ

+α3ǫ

+α4ǫ

Removing edge e ⇒ lower bounding network

Rerouting flow of edge e over other paths (
∑

αi = 1) ⇒ upper bounding
network
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Comparing inner and outer bounds

Consider network (N ,c) and let

Ï (No ,co ): outer bounding network for N

Ï (Ni ,ci ): inner bounding network for N

Question: How to compare the bounds?

Assume No and Ni have identical topologies.

Difference factor between Ni and No is defined:

∆=∆(ci ,co ),max
e∈E

ce,o

ce,i
≥ 1

Multiplicative bound

Ri ⊆Ro ⊆∆Ri .
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Hierarchical network simplification (HNS)

Given:

Ï network G = (V ,E )

Ï edge capacities (Ce )e∈E

HNS: heuristic algorithm

Output of HNS:

i. simpler feasible bounding network
ii. capacities of upper and lower

bounding network

v1

T1

v3

v4

v5

S1

T2

v8

Original network: |V | = 8 and |E | = 16
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HNS Step 1: layering

Add extra nodes

Ï sources at top level

Ï sinks at the bottom

Ï relay nodes at the intermediate
layers

Number of layers:

Ï length of longest path from a
source to a sink

v1

T1

v3

v4

v5

S1

T2

v8

v9v10 v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21v22

v23

v24v25

v26

v27

v28 v29v30 v31

v32

v33

v34

v35

v36

v37

v38

v39

v40

v41

v42

v43

v44

v45

v46

v47

v48

v49 v50 v51v52 v53
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HNS Step 2: find and merge parallel paths

Find set of all parallel paths

Consider two such parallel paths:

Ï P : v0 → v1 → v2 → . . . vℓ−1 → vℓ

Ï P
′ : v0 → v ′

1 → v ′
2 → . . . v ′

ℓ−1
→ vℓ

Coalesce P and P
′ iff

i. {v ′
2, . . . , v ′

ℓ−1
} are all SISO nodes

ii. for i = 1,. . . ,ℓ−1,

Cv ′
i
→v ′

i+1

Cvi →vi+1

≤ γ.

v1

T1

v3

v4

v5

S1

T2

v8

v9v10 v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21v22

v23

v24v25

v26

v27

v28 v29v30 v31

v32

v33

v34

v35

v36

v37

v38

v39

v40

v41

v42

v43

v44

v45

v46

v47

v48

v49 v50 v51v52 v53
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HNS Step 3: simplify

As the last topological step:

i. remove all SISO nodes

ii. combine parallel paths

Repeat the whole process (if necessary)

Output:

Ï candidate bounding network of smaller size

v1

T1

v3

v4

v5

S1

T2

v8

v9

v10

v11

v12

v13

42



HNS Step 3: simplify

As the last topological step:

i. remove all SISO nodes

ii. combine parallel paths

Repeat the whole process (if necessary)

Output:

Ï candidate bounding network of smaller size

T1

v2

S1

T2
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LP bounds

Given:

Ï Network N with edge capacities c = (ce )e∈E

Ï bounding topology B

Goal: find edge capacities ci = (ci ,e ) and co = (co,e ) such that

B(ci ) ⊆N (c) ⊆B(co )

Solution: characterize a set of LPs for finding ci and co

[Effros, Ho, SJ 2010] [Effros, Ho, SJ, Xia 2012]
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HNS Step 4: Linear Programming

LP 1:

min cm

s.t. ce2 ≤ cm ,∀ e2 ∈ E2

(c2, f ,r ) ∈M (c1)

Let c∗m solution of LP 1

LP 2:

min
∑

e2∈E2

ce2

s.t. ce2 ≤ c∗m ,∀ e2 ∈ E2

(c2, f ,r ) ∈M (c1).

N (c) ⊆B(c ′)

v1

T1

v3

v4

v5

S1

T2

v8

Original network: |V | = 8 and |E | = 16

T1

v2

S1

T2

Simplified network: |V | = 4 and |E | = 3
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HNS Step 4: Linear Programming

LP 3:

min k

s.t. (kc, f ,r ) ∈M (c ′)

T1

v2

S1

T2

Simplified network: |V | = 4 and |E | = 3

v1

T1

v3

v4

v5

S1

T2

v8

Original network: |V | = 8 and |E | = 16
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HNS performance

Performance achieved by varying γ:

10 15 20 25 30 35 40
2

3

4

5

6

7

8

9

k

Number of edges

Original network: |V | = 20 and |E | = 40

46



Summary

Wireline networks:

Separation of source-network coding and channel coding is optimal.

Wireless networks:

Find outer and inner bounding noiseless networks.

New approach to analyzing noiseless networks:

Ï iterative method

Ï step-by-step reduces the size of the graph

Ï at each step: one component is replaced by an equivalent or bounding
component
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