
Making Verifiable Computation Useful

Bryan Parno

1

Carnegie Mellon University

Rapid Perf
Improvements

Verifier Latency Prover Overhead

~1023 x

~1016 x

~107 x

~105 x
 12 minutes

100x100 matrix mult.

Cost fell 18 orders of
magnitude in 6 years

72 Trillion
years!

Cost fell 23 orders of
magnitude in 6 years

<10 ms!

Coping with
Prover Overhead

3

1. Leverage zero knowledge
– Example: Bitcoin++

[Daneziset al. ‘13] [Ben-Sassonet al. ‘14]
[Kosbaet al. ‘15] [Miller et al. ‘15]

2. Find (rare?) applications that
tolerate substantial overhead
– Original computation is cheap

or infrequent
• Example: Fair exchange of digital goods

– Integrity benefits outweigh costs
• Example: Verifiable ASICs [Wahbyet al. ‘15]

3. Innovations in proof generation

[Maxwell ‘16]

VC

Cinderella: Turning Shabby
X.509 Certificates into Elegant

Anonymous Credentials

Antoine Delignat-Lavaud

Cédric Fournet

Markulf Kohlweiss

Bryan Parno

X.509

with the Magic of Verifiable Computation
[IEEE S&P ‘16]

The X.509 Public Key Infrastructure (1988)

Endpoint certificate

Intermediate Certificate Authority certificate

Root Certification Authority certificate

Chain

X.509 Authentication

Authorized
root

certificates
(data)

Certificate
validation
program

certificates +
private keys

(1-3 KB /certificate)

OCSP, Certificate
Transparency

Certificate
Authority

X.509 Problem: App Heterogeneity

Authorized
root

certificates
(data)

Certificate
validation
program

certificates +
private keys

(1-3 KB /certificate)

OCSP, Certificate
Transparency

Basic Validation

Correct ASN.1 encoding (injective parsing)

Correct signatures linking chain

Valid basic constraints

Valid key usages

Acceptable algorithms & key sizes

TLS Validation

notBefore < now() < notAfter

Domain == Subject CN?
Domain in Subject Alternative Names?
Domain matches a wildcard name?
Domain compatible with Name Constraints?

Endpoint EKU includes TLS client/server?

Chain allows TLS EKU

Not revoked now

S/MIME Validation

notBefore < email date < notAfter

Subject emailAddress or Alternative Names
include sender email?

Endpoint EKU includes S/MIME?

Chain allows S/MIME EKU

Not revoked when mail was sent

• TLS
• S/MIME
• Code signing
• Document signing
• Client authentication

(e.g. smartcards)
• …

Crypto failures

Recent PKI Failures

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

HashClash rogue CA
(MD5 collision)
Stevens et al.

Flame maleware
NSA/GCHQ attack

against Windows CA Bleichenbacher’s
e=3 attack on

PKCS#1 signatures

512 bit Korean
School CAs

TÜRKTRUST

BERSerk
(MSR/Inria)

DigiNotar hack

EKU-unrestricted
VeriSign certificates

ANSSIComodo hack Trustwave
VeriSign

NetDiscovery

Debian OpenSSL entropy bug

Basic constraints not properly enforced (recurring & catastrophic bug)

OpenSSL
null prefix

The SHAppening

DROWN
KeyUsage

Name constraints failures

VeriSign hack

OpenSSL CVE-
2015-1793

GnuTLS X509v1

Formatting & semantics

CA failures

Superfish

India NIC
StartCom hack

China NNIC

X.509 Problem: Privacy violations

Authorized
root

certificates
(data)

Certificate
validation
program

certificates +
private keys

(1-3 KB /certificate)

OCSP, Certificate
Transparency

Network
Observer

Network
Observer

Learns full
certificate
contents

Many anonymous credential systems
solve this, but ~0 are used today

Cinderella: Main Idea

Authorized
root

certificates
(data)

Certificate
validation
program

certificates +
private keys

Geppetto
compiler

[IEEE S&P ‘15]

other
evidence

(e.g. OCSP)

Verification key Evaluation key

Proof
(288 B)

Computation Outsourcing with Pinocchio

Setup Phase

Runtime Phase

C program
F(priv, pub)

public verifier inputs
private prover inputs

+

X

X

C

D

Arithmetic Circuit

Succinct Proof

Query(pub)

Verification
key (VK)

Evaluation
key (EK)

Verify(Proof, VK) Evaluate(F(priv, pub), EK)

[CRYPTO ‘10] [EuroCrypt‘13] [IEEE S&P ‘13] [IEEE S&P ‘15]

Complex programs
compile to large
arithmetic circuits

Cinderella: Contributions

• A compiler from high-level validation policy templates to
Pinocchio-optimized certificate validators

• Pinocchio-optimized libraries for hashing and RSA-PKCS#1
signature validation

• Several TLS validation policies based on concrete templates
and additional evidence (OCSP)
• Integrated with OpenSSL

• Tested on real certificate chains

• e-Voting support based on Helios with Estonian ID cards

Benefits and Caveats

• Practicality: Compatible with
existing PKI and certificates

• Ensures uniform application of the
validation policy but allows
flexible issuance policies

• Anonymity: Complete control over
disclosure of certificate contents

• Less exposure of long-term private
keys through weak algorithms

• Computationally expensive

• Initial agreement on the
validation policy

• Reliance on security of verified
computation system
• Exotic crypto assumption

• Trusted key generation

• Does not solve key management
(one more layer to manage)

Compiling Certificate Templates

seq {seq {
Version
tag<0>: const<2L>;
Serial Number
var<int, serial, 10, 20>;
Signature Algorithm
seq {

const<O1.2.840.113549.1.1.5>
; const<null>; };

Issuer
seq { set { seq {
const<O2.5.4.10>;

const<printable:"AlphaSSL">;
};};set { seq { const<O2.5.4.3>;
const<printable:"AlphaSSL CA -
G2">; }; };
};

Validity Period
seq {
var<date, notbefore, 13, 13>;
var<date, notafter, 13, 13>;
};

Subject
seq {
varlist<subject, 2, 4>:
set {
seq {
var<oid, subjectoid, 3, 10>;
var<x500, subjectval, 2, 31>;
};

};
};

[…]
Template

Untrusted Native Parser
Parse certificate

Generate Prover Inputs

C/QAP verifier
Concatenate compile-time

constants and run-time vars
Compute running hash

Template
compiler

Variables

Constants

Variable lists

Private inputs

Verifying PKCS#1 RSA Signatures

S ^ e mod N = 1ffffffffff[…]ffffffkkkkk[…]kkkkkkyyyyyyyyyyyyyyyyyyyy

Hash (computed before)

S 120 bits 120 bits 120 bits

S2 240+ bits 240+ bits 240+ bits 240+ bits 240+ bits

…

…

S2 = Q*N + R

Q*N 240+ bits 240+ bits 240+ bits 240+ bits 240+ bits …

R 120 bits 120 bits 120 bits …

S <- R

S ^ e = S (((S ^ 2) ^ 2) …

Verify prover hints are valid

Assume fixed e = 65537 = 216 + 1

Private inputs Q and R

Application: TLS Client Authentication

Client
Cert
fields

Verification key
Evaluation key

Proof

Ephem
Key

F(fields)

Ephem
Key

F(fields) Proof

Ephem
Key

F(fields) Proof

✓

Key Exchange signed with Ephem Key

Geppetto
compiler

[IEEE S&P ‘15]

Offline

Application evaluation

0.001

0.01

0.1

1

10

100

1000

TLS (2 intermediates
+ OCSP)

TLS (1 intermediate
+ OCSP)

TLS (no
intermediate, OCSP)

Helios (OCSP)

Keygen time Proof time Verify time

Seconds

Cinderella Summary

• One of the first practical applications of verifiable computing

• We achieve privacy and integrity for X.509 authentication

• No change to PKI or to protocols

• Working prototype for TLS and Helios

Coping with
Prover Overhead

20

1. Leverage zero knowledge
– Example: Bitcoin++

[Daneziset al. ‘13] [Ben-Sassonet al. ‘14]
[Kosbaet al. ‘15] [Miller et al. ‘15]

2. Find (rare?) applications that
tolerate substantial overhead
– Original computation is cheap

or infrequent
• Example: Fair exchange of digital goods

– Integrity benefits outweigh costs
• Example: Verifiable ASICs [Wahbyet al. ‘15]

3. Innovations in proof generation

[Maxwell ‘16]

Recent Innovations in Proof Generation

• Improve efficiency of popular programming
paradigms

– Ex: Hash-and-Prove [Fiore et al. ‘16]

– Ex: vSQL [Zhang et al. ‘17]

• Meld SNARKs with interactive proofs

– Ex: Allspice [Vu et al. ’13], vSQL [Zhang et al. ‘17]

21

Future Innovations in Proof Generation

• More efficient cryptographic encodings

– Lattices?

– Symmetric homomorphic primitives?

• Specialized verifiable computation protocols

– Ex: ZK verifiable regular expressions

22

Disruptive Approaches

23

Software
Guard
Extensions
(SGX)

Ironclad Apps
A
p
p

L
i
b

Hardware specs

MathTPM DriverNet Driver

UDP/IP Datatypes RSA

Ethernet BigNumSHA-256

Std. Lib Common

App

Late
launch

IOMMUSegs GC
Device

IO

Ubiquitous
secure
hardware

Fully
verified
software

+

Secure
verifiable
computation

?
• ~0 performance overhead
• Fully general
• Obfuscated programs
• Platform assurance

Trusted
Platform
Module
(TPM)

Conclusions
• Despite progress, prover overheads limits

usefulness of verifiable computation

• Cinderella circumvents prover overhead to
improve the privacy, security, and flexibility of
the X.509 PKI

• Secure hardware + verified software may
disrupt crypto-only solutions

24

Thank you!
parno@cmu.edu

