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Rapid Perf 
Improvements

Verifier Latency Prover Overhead

~1023 x

~1016 x

~107 x

~105 x 
 12 minutes

100x100 matrix mult.

Cost fell 18 orders of 
magnitude in 6 years

72 Trillion 
years!

Cost fell 23 orders of 
magnitude in 6 years

<10 ms!



Coping with 
Prover Overhead
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1. Leverage zero knowledge
– Example: Bitcoin++

[Daneziset al. ‘13] [Ben-Sassonet al. ‘14] 
[Kosbaet al. ‘15] [Miller et al. ‘15]

2. Find (rare?) applications that 
tolerate substantial overhead
– Original computation is cheap

or infrequent
• Example: Fair exchange of digital goods

– Integrity benefits outweigh costs
• Example: Verifiable ASICs [Wahbyet al. ‘15] 

3. Innovations in proof generation

[Maxwell ‘16]
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Cinderella: Turning Shabby 
X.509 Certificates into Elegant 

Anonymous Credentials
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X.509

with the Magic of Verifiable Computation
[IEEE S&P ‘16] 



The X.509 Public Key Infrastructure (1988)

Endpoint certificate

Intermediate Certificate Authority certificate

Root Certification Authority certificate

Chain



X.509 Authentication

Authorized 
root 

certificates
(data)

Certificate 
validation 
program

certificates + 
private keys

(1-3 KB /certificate)

OCSP, Certificate 
Transparency

Certificate 
Authority



X.509 Problem: App Heterogeneity

Authorized 
root 

certificates
(data)

Certificate 
validation 
program

certificates + 
private keys

(1-3 KB /certificate)

OCSP, Certificate 
Transparency

Basic Validation

Correct ASN.1 encoding (injective parsing)

Correct signatures linking chain

Valid basic constraints

Valid key usages

Acceptable algorithms & key sizes

TLS Validation

notBefore < now() < notAfter

Domain == Subject CN?  
Domain in Subject Alternative Names? 
Domain matches a wildcard name?  
Domain compatible with Name Constraints?

Endpoint EKU includes TLS client/server?  

Chain allows TLS EKU

Not revoked now

S/MIME Validation

notBefore < email date < notAfter

Subject emailAddress or Alternative Names 
include sender email?  

Endpoint EKU includes S/MIME?  

Chain allows S/MIME EKU

Not revoked when mail was sent

• TLS
• S/MIME
• Code signing
• Document signing
• Client authentication

(e.g. smartcards)
• …



Crypto failures

Recent PKI Failures

2006              2007              2008              2009              2010              2011              2012             2013              2014              2015

HashClash rogue CA
(MD5 collision)
Stevens et al.

Flame maleware
NSA/GCHQ attack 

against Windows CA Bleichenbacher’s
e=3 attack on 

PKCS#1 signatures

512 bit Korean 
School CAs

TÜRKTRUST

BERSerk
(MSR/Inria)

DigiNotar hack

EKU-unrestricted
VeriSign certificates

ANSSIComodo hack Trustwave
VeriSign

NetDiscovery

Debian OpenSSL entropy bug

Basic constraints not properly enforced (recurring & catastrophic bug)

OpenSSL 
null prefix

The SHAppening

DROWN
KeyUsage

Name constraints failures

VeriSign hack

OpenSSL CVE-
2015-1793

GnuTLS X509v1

Formatting & semantics

CA failures

Superfish

India NIC
StartCom hack

China NNIC



X.509 Problem: Privacy violations

Authorized 
root 

certificates
(data)

Certificate 
validation 
program

certificates + 
private keys

(1-3 KB /certificate)

OCSP, Certificate 
Transparency

Network 
Observer

Network 
Observer

Learns full 
certificate
contents

Many anonymous credential systems 
solve this, but ~0 are used today



Cinderella: Main Idea

Authorized 
root 

certificates
(data)

Certificate 
validation 
program

certificates + 
private keys

Geppetto
compiler 

[IEEE S&P ‘15]

other 
evidence 

(e.g. OCSP)

Verification key Evaluation key

Proof
(288 B)



Computation Outsourcing with Pinocchio

Setup Phase

Runtime Phase

C program
F(priv, pub)

public verifier inputs
private prover inputs

+

X

X

C

D

Arithmetic Circuit

Succinct Proof

Query(pub)

Verification 
key (VK)

Evaluation 
key (EK)

Verify(Proof, VK) Evaluate(F(priv, pub), EK)

[CRYPTO ‘10] [EuroCrypt‘13] [IEEE S&P ‘13] [IEEE S&P ‘15] 

Complex programs 
compile to large 
arithmetic circuits



Cinderella: Contributions

• A compiler from high-level validation policy templates to 
Pinocchio-optimized certificate validators 

• Pinocchio-optimized libraries for hashing and RSA-PKCS#1 
signature validation 

• Several TLS validation policies based on concrete templates 
and additional evidence (OCSP)
• Integrated with OpenSSL

• Tested on real certificate chains

• e-Voting support based on Helios with Estonian ID cards 



Benefits and Caveats

• Practicality: Compatible with 
existing PKI and certificates 

• Ensures uniform application of the 
validation policy but allows 
flexible issuance policies

• Anonymity: Complete control over 
disclosure of certificate contents

• Less exposure of long-term private 
keys through weak algorithms

• Computationally expensive

• Initial agreement on the 
validation policy

• Reliance on security of verified 
computation system
• Exotic crypto assumption

• Trusted key generation

• Does not solve key management 
(one more layer to manage)



Compiling Certificate Templates

seq {seq {
# Version
tag<0>: const<2L>;
# Serial Number
var<int, serial, 10, 20>;
# Signature Algorithm
seq {   

const<O1.2.840.113549.1.1.5>
;  const<null>; };

# Issuer
seq { set {  seq {
const<O2.5.4.10>;  

const<printable:"AlphaSSL">; 
};};set { seq {  const<O2.5.4.3>;  
const<printable:"AlphaSSL CA -
G2">; }; };
};

# Validity Period
seq {
var<date, notbefore, 13, 13>;
var<date, notafter, 13, 13>;
};

# Subject
seq {
varlist<subject, 2, 4>:
set {
seq {
var<oid, subjectoid, 3, 10>;
var<x500, subjectval, 2, 31>;
};

};
};

[…]
Template

Untrusted Native Parser
Parse certificate

Generate Prover Inputs

C/QAP verifier
Concatenate compile-time 

constants and run-time vars
Compute running hash

Template
compiler

Variables

Constants

Variable lists

Private inputs



Verifying PKCS#1 RSA Signatures

S ^ e mod N = 1ffffffffff[…]ffffffkkkkk[…]kkkkkkyyyyyyyyyyyyyyyyyyyy

Hash (computed before)

S 120 bits 120 bits 120 bits

S2 240+ bits 240+ bits 240+ bits 240+ bits 240+ bits

…

…

S2 = Q*N + R

Q*N 240+ bits 240+ bits 240+ bits 240+ bits 240+ bits …

R 120 bits 120 bits 120 bits …

S <- R

S ^ e = S (((S ^ 2) ^ 2) …

Verify prover hints are valid

Assume fixed e = 65537 = 216 + 1

Private inputs Q and R



Application: TLS Client Authentication

Client 
Cert
fields

Verification key
Evaluation key

Proof

Ephem
Key 

F(fields)

Ephem
Key 

F(fields) Proof

Ephem
Key

F(fields) Proof

✓

Key Exchange signed with Ephem Key

Geppetto
compiler 

[IEEE S&P ‘15]

Offline



Application evaluation

0.001

0.01

0.1

1

10

100

1000

TLS (2 intermediates
+ OCSP)

TLS (1 intermediate
+ OCSP)

TLS (no
intermediate, OCSP)

Helios (OCSP)

Keygen time Proof time Verify time

Seconds



Cinderella Summary

• One of the first practical applications of verifiable computing

• We achieve privacy and integrity for X.509 authentication

• No change to PKI or to protocols

• Working prototype for TLS and Helios



Coping with 
Prover Overhead
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1. Leverage zero knowledge
– Example: Bitcoin++

[Daneziset al. ‘13] [Ben-Sassonet al. ‘14] 
[Kosbaet al. ‘15] [Miller et al. ‘15]

2. Find (rare?) applications that 
tolerate substantial overhead
– Original computation is cheap

or infrequent
• Example: Fair exchange of digital goods

– Integrity benefits outweigh costs
• Example: Verifiable ASICs [Wahbyet al. ‘15] 

3. Innovations in proof generation

[Maxwell ‘16]



Recent Innovations in Proof Generation

• Improve efficiency of popular programming 
paradigms

– Ex: Hash-and-Prove [Fiore et al. ‘16] 

– Ex: vSQL [Zhang et al. ‘17]

• Meld SNARKs with interactive proofs

– Ex: Allspice [Vu et al. ’13], vSQL [Zhang et al. ‘17]
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Future Innovations in Proof Generation

• More efficient cryptographic encodings

– Lattices?

– Symmetric homomorphic primitives?

• Specialized verifiable computation protocols

– Ex: ZK verifiable regular expressions

22



Disruptive Approaches
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Software 
Guard 
Extensions
(SGX)

Ironclad Apps
A
p
p

L
i
b

Hardware specs

MathTPM DriverNet Driver

UDP/IP Datatypes RSA

Ethernet BigNumSHA-256

Std. Lib Common

App

Late
launch

IOMMUSegs GC
Device

IO

Ubiquitous 
secure 
hardware

Fully 
verified 
software

+

Secure 
verifiable 
computation

?
• ~0 performance overhead
• Fully general
• Obfuscated programs
• Platform assurance

Trusted
Platform 
Module
(TPM)



Conclusions
• Despite progress, prover overheads limits 

usefulness of verifiable computation

• Cinderella circumvents prover overhead to 
improve the privacy, security, and flexibility of 
the X.509 PKI

• Secure hardware + verified software may 
disrupt crypto-only solutions
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Thank you!
parno@cmu.edu


