Efficient Primal-Dual Graph
Algorithms for Map Reduce

Kamesh Munagala

Duke University

Joint work with
Bahman Bahmani
Ashish Goel, Stanford

Modern Data Models

« Over the past decade, many commodity
distributed computing platforms have emerged
o Map-Reduce; Distributed Stream Processing; ...

 Similar to PRAM models, but have several nuances

o Carefully calibrated to take latencies of disks vs network vs
memory into account

o Cost of processing often negligible compared to the cost
of data transfer

o Take advantage of aggregation in disk and network
operations

Map Reduce (or Hadoop)

MAP: Transforms a (key, value) pair info other (key, value)
pairs using a UDF (User Defined Function) called Map. Many
mappers can run in parallel on vast amounts of data in a
distributed file system

SHUFFLE: The infrastructure then transfers data from the
mapper nodes to the “reducer” nodes so that all the (key,
value) pairs with the same key go to the same reducer and
get grouped into a single large (key, <val,, val,, ..>) pair

REDUCE: A UDF that processes this grouped (key, <val;,

val,, ..>) pair for a single key. Many reducers can run |n
porollel

[Dean and Ghemawat; 2005]

Complexity Measures

« Key-Complexity:
o The maximum size of a key-value pair
o The amount of fime taken to process each key
o The memory required to process each key

« Sequential Complexity:
o The total time needed by all the mappers and reducers together
o The total output produced by all the mappers and reducers

« Number of MapReduce phases

[Goel, Munagala, 2012; Andoni, Nikolov, Onak, Yaroslavisev, 2014]

E AMOUNT OF WORK DONE P
COMPUTER IF WE HAD INFINITELY MANY

COMPUTERS

o The maximum size of a key-value pair
o The amount of fime taken to process each key
o The memory required to process each key

« Sequential Complexity:
o The total time needed by all the mappers and reducers together
o The total output produced by all the mappers and reducers

« Number of MapReduce phases

[Goel, Munagala, 2012; Andoni, Nikolov, Onak, Yaroslavisev, 2014]

€5

THE AMOUNT OF WORK

« Key-Complexit DONE ON A SINGLE
o The maximum siz€e COMPUTER

o The amount of time 8
o The memory required to p

« Sequential Complexity:
o The total time needed by all the mappers and reducers together
o The total output produced by all the mappers and reducers

« Number of MapReduce phases

[Goel, Munagala, 2012; Andoni, Nikolov, Onak, Yaroslavisev, 2014]

Complexity Measures

« Key-Complexity:
o The maximum size of a key-value pair
o The amount of fime taken to process each key
o The memory required to process each ke

« Sequential Complexity:
o The total time needed by all the mappers and s together
o The total output produced by all the mappers and reducers

« Number of MapReduce phases

[Goel, Munagala, 2012; Andoni, Nikolov, Onak, Yaroslavisev, 2014]

Complexitamfessiires

] A COMPLEXITY
« Key-Complexit MEASURE SINCE THAT
o The maximum si} DEPENDS ON THE
o The amount of fi NUMBER OF REDUCERS
o The memory required TN BRVY NGy !

« Sequential Complexity:
o The total time needed by all the mappers and reducers together
o The total output produced by all the mappers and reducers

« Number of MapReduce phases

[Goel, Munagala, 2012; Andoni, Nikolov, Onak, Yaroslavisev, 2014]

Complexity Measures

« Key-Complexity: HE AMOUNT OF WORK
o The maximum size o DONE TO AGGREGATE
o The amount of time ALL THE VALUES FOR A
SINGLE KEY (SORTING)
IS NOT A COMPLEXITY
MEASURE

o The memory require

« Sequential Complexity:
o The total time needed by allhe mappers and reducers together
o The total output produced by all the mappers and reducers

« Number of MapReduce phases

[Goel, Munagala, 2012; Andoni, Nikolov, Onak, Yaroslavisev, 2014]

In this talk...

« Parallel algorithms for approximately solving linear
programs
o Exact model - MapReduce, PRAM - does not matter that much

« Several basic model-independent open questions

Densest Subgraph
Problem (DSG)

« Given: an undirected graph G = (V,E), with N nodes,

M edges, and maximum degree d,ax
o For asubset S of nodes, let E(S) denote the set of edges between
nodes in S
o Goal: Find the set S that maximizes | E(S) |/]|S|
o Applications: Community detection, computational biology

Densest Subgraph
Problem (DSG)

Given: an undirected graph G = (V,E), with N nodes,
M edges, and maximum degree d,ax

o For asubset S of nodes, let E(S) denote the set of edges between
nodesin S

o Goal: Find the set S that maximizes | E(S) |/]|S|
o Applications: Community detection, computational biology

Can be solved in polynomial tfime

(2+ €)-approximation known on MapReduce
o O((log N)/ &)-phases

o Sequential complexity O(M) per phase

o Key complexity O(d,ax)

[Bahmani, Kumar, Vassilvitskii; 2012]

Our Result

O((log N)/ € ¢) iterations on MapReduce

Each iteration:
o Reduce-key complexity: O(d,,ax)
o Sequential complexity: O(M)

In contrast, GREEDY takes O((log N)/ €) iterations, but
gives a (2+ € J-approximation
Recent single phase sampling algorithms need O(N) key complexity
[Bhattacharya et al. '15; McGregor et al. *15]

Other Results: (1+ €) approximate max multi-commodity
flow when paths are at most L hops
o Shave an € from 1/ € 4 dependence in [Awerbuch, Khandekar; ‘07]

LP Formulation

Maximize 2 .Y,

Subject to:

2, X, <]

Yo <X, [forall vertices v, edge e such that e is incident
on V]

X,y=0

LP Formulation

Maximize 2 .Y,

SU bjec’r to: X, indicates whether node v
is part of S
2, X, <1

Yo <X, [forallnodes v, edges e, such that e is incident
on V]

X,y=0

y. indicates whether edge e
» A Is part of E(S)
Maximize 2 . Y, P

SU bjec’r to: X, indicates whether node v
is part of S
2, X, <1

Yo <X, [forallnodes v, edges e, such that e is incident
on V]

X,y=0

y. indicates whether edge e
» A Is part of E(S)
Maximize 2 . Y, P

SU bjec’r to: X, indicates whether node v
is part of S
2, X, <1

Yo <X, [forallnodes v, edges e, such that e is incident

onvl] T—
X v>0 Edge e can be in E(S) only if its
e endpoints are in S

Maximizing X, y, while setting X x, < 1 maximizes
densit

y. indicates whether edge e
- A0 Is part of E(S
Maximize 2 . Y, P)

Subject fo: x, indicates whether node v
is part of S
>, X, < £

Yo <X, [forallnodes v, edges e, such that e is incident

onvl] T—
X v>0 Edge e can be in E(S) only if its
e endpoints are in S

Maximizing X, y, while setting X x, < 1 maximizes
densit

y. indicates whether edge e
- A0 Is part of E(S
Maximize 2 . Y, P)

Subject fo: x, indicates whether node v
is part of S
>, X, < £

Yo <X, [forallnodes v, edges e, such that e is incident

onvl] T—
X v>0 Edge e can be in E(S) only if its
e endpoints are in S

The LP has NO INTEGRALITY GAP

General Direction for DSG

* Write the dual of the LP, and solve it on MapReduce

« Dualis a “mixed packing/covering” problem
o Maximum concurrent flow in a certain type of bipartite graph

« PST-type algorithms: Perform multiplicative updates
of dual weights till constraints are safisfied

o Powerful primal-dual technique
o Also called “mirror descent” or “Frank-Wolfe" type algorithms

[Plotkin, Shmoys, Tardos; 1991, Grigoriadis, Khachiyan; 1993, Garg,
Konemann; 1997, Freund, Schapire; 1997]

[General exposition: Arora, Hazan, Kale; 2012]

Parallel Implementations

[Young 2001] O((log® N)/ € 4) phases for (1+ €)
approximation

Other parallel variants known for pure packing/

covering problems
[Luby, Nisan 1993; Awerbuch, Khandekar 2009; Allen-Zhu, Orecchia 2015]

o Noft really applicable to our mixed packing/covering problem

Algorithms prior to ours needed @ (1/ € %) phases to

achieve (1+) approximation
o Same dependence holds even for pure packing/covering problems

Our Approach

« Formulate dual in a form suitable for applying
multiplicative weights (or PST)

 Reduce "width” for efficiency

o Width is roughly the magnitude of the gradient of a potential
function that measures violation in constraints

o Mirror descent or PST-type algorithms are more efficient when
gradient has small magnitude

« Reducing width leads to infeasible primall

 Increase width for obtaining the primal back
from the dual

The Primal and its Dual

Maximize 2 _ Yy,
Subject to:

2, X, <]

Ye X,

X,y=20

The Primal and its Dual

Maximize 2 _ Yy,

Subject to:
2, %, <1 [D]
Ye S X, e,

X,y=20

The Primal and its Dual

Maximize 2 _ Y,

Subject to:

2, %, <1 [D]
Ye S X, e,
X,y=20

Minimize D
Subject to:

de,V T Ge,w >1 [Ye]
[for all edges e = (v,w)]

Z‘e incident on v Ge,V <D [Xv]

[for all nodes V]

a D=0

The Primal and its Dual

Maximize 2 _ v,

Subject to:

2, %X, <1 [D]
Ye S X, @]
X,y=20

Minimize D Each edge sends
Subject to: unit flow

Ge,V T Ge,w >1 [Ye]
[for all edges e = (v,w)]

Z‘e incident on v ae,v <D [Xv]
[for all nodes V]
Each vertex has
a, D=0 capacity D

Max. Concurrent flow on bipartite

E x V graph with LHS degree =2

The Primal and its Dual

Maximize 2 _ Yy,

Subject to:

2, %, <1 [D]
V<%, lag)
X,y=20

USEFUL FACT: An approximate
solution to this dual results in an
approximate solution to the primal

Minimize D
Subiject to:

ae,v T ae,w >1 [Ye]
[for all edges e = (v,w)]

Y

e incident on v

ae,v <D [XV]

[for all nodes V]

aD=>0

Solving the Dual

Munnmize P Guess D
Subjeette: Try to find q,
S.t.

ae,v T ae,w >1

[for all edges e = (Vb

Solving the Dual

PST: Solve the dual using
calls to the following
oracle, for given y,:

Maximize 3 y.(a., + @)
st.ae P

Width, o = max{a,, + a.,,}
S.T.
acP

Guarantee:

We get (1+ €)-approx. in
O(o (log N)/ € 2) steps

Minimize D Guess D
Subjeetto: Try to find q,
S.t.

a.,+d,, = 1
[for all edges e = (Vb
Z‘e incident on v ae,V <D

[for all nodes v]

a>0

The Dual Oracle on
MapReduce

« Need to compute the oracle in each iteration:

Maximize) y.(a. , + @), subject to:

2 e incident on v ae,v <D;az 0

 Maps well to MapReduce
o Map(edge e = (uU,v), Y.):
EMIT(u, (e, y.)); Emit(v, (e, y.))

o Reduce(node u, <(e|, Y1), ...>):
Find the largest y, in the values list

Output @, , = D and everything else is implicitly O
o Key complexity: O(dyax); sequential complexity: O(M)

Solving the Dual

PST: Solve the dual using
calls to the following
oracle, for given y,:

Maximize Y y.(a,, + @
st.aeP

ev)

Width, o = max {a,, + a,..}
S.1.

Minimize D Guess D
Subjeetto: Try to find q,
S.t.

acP
Guarantee:
We get (1+ €)-approx. in

O(p (log N)/g_z) steps

Q.. +0,, 21
[for all edges e = (Vb
Z‘e incident on v ae,v <D

[for all nodes V]

a=0

Solving the Dual

PST: Solve the dual using
calls to the following
oracle, for given y,:

Maximize Y y.(a., *+ @)
st.ae P

Width, o = max {a,, + a,..}

Minimize D Guess D
Subjeetto: Try to find q,
S.t.

S.1.
acP
Guarantee:
We get (1+ €)-approx. in

O(p (log N)/g_z) steps

First Problem: o is too large
(as large as D)

Q.. +0,, 21
[for all edges e = (Vb
Z‘e incident on v ae,v <D

[for all nodes V]

a=0

Solving the Dual:
Reducing Width

Munnmize P Guess D
Subjeetto: Try to find q,
S.t.

ae,v T Ge,w 2 1

[for all edges e = (Vb

e incident on v ae,v <D
[for all nodes V]

2

a=>0;

Solving the Dual:
Reducing Width

width, o = max{a,, + ae,Y}
S.T.
acP

The optimum solution to
’rhe dual LP never sets any
, To be larger than 1,

ond hence, adding the

“Ya < 1" constraints does not
change the dual solution

Next problem: It no longer
holds that an approximate
dual leads to an
approximate primal

Minimize P Guess D
Subjeetto: Try to find q,
S.t.

Q.. +0,, 21

[for all edges e = (V,b

e incident on v ae,v <D
[for all nodes V]

2

a=>0;

Preserving
Approximation

Replace "a< 1" with
Ha S 2”

The width increases
by only O(1), but:

Technical Lemma: A
(1+ €)-approximate
solution to the dudl
resultsin a (1+O(€))-
approximate solution
to the primal

Minimize P Guess D
Subjeetto: Try to find q,
S.t.

ad., 1t 0. >1

[for all edges e = (V,b

e incident on v ae,v <D
[for all nodes V]

2

a=>0;

Performance Revisited

O((log N)/ € 2) iterations

Each iteration:
o Reduce-key complexity: O(d,,ax)
o Sequential complexity: O(M)

In contrast, GREEDY takes O((log N)/ €) iterations, but
gives a (2+ € J-approximation
Recent O(1) phase algorithms need O(N) reduce-key complexity
[Bhattacharya et al. '15; McGregor et al. *15]

Other Results: (1+ €) approximate max multi-commodity
flow when paths are at most L hops
o Shave an € from 1/ € 4 dependence in [Awerbuch, Khandekar; ‘07]

Open Questions: |

« [Allen-Zhu, Orecchia; 2015]

o 1/€e3dependence for any pure packing and covering problem
o Clever thresholding of dual oracle to reduce the width
o Use a combination of gradient descent and mirror descent analysis

« Can we improve these bounds further?

o Beat 1/ €4 for general mixed packing/covering problems
o Beat 1/ & 3 for pure packing/covering problems

 Efficient distributed algorithm for max concurrent
flow with bounded path lengthse

Open Questions: 11

Cautionary Note:

In experiments on real networks, GREEDY is actually superior
GREEDY needs very few rounds; finds almost optimal solutions
PRIMAL-DUAL does not take advantage of graph structure

O
O
O
o “Warm start” does not seem to speed things up much

Can we combine combinatorial methods with

convex programming technigques?

Constant approximations with small number of
rounds for larger classes of flow/cut problems?

