
Distributed Submodular
Maximization in Massive Datasets

Joint work with

Rafael Barbosa, Huy L. Nguyen, Justin Ward

Alina Ene

Combinatorial Optimization

• Given
– A set of objects V

– A function f on subsets of V

– A collection of feasible subsets I

• Find
– A feasible subset of I that maximizes f

• Goal
– Abstract/general f and I

– Capture many interesting problems

– Allow for efficient algorithms

Submodularity

We say that a function is submodular if:

We say that is monotone if:

Alternatively, f is submodular if:

 for all and

Submodularity captures diminishing returns.

Submodularity

Examples of submodular functions:

– The number of elements covered by a collection of sets

– Entropy of a set of random variables

– The capacity of a cut in a directed or undirected graph

– Rank of a set of columns of a matrix

– Matroid rank functions

– Log determinant of a submatrix

Example: Multimode Sensor Coverage

• We have distinct locations where we can place sensors

• Each sensor can operate in different modes, each with a
distinct coverage profile

• Find sensor locations, each with a single mode to maximize
coverage

Example: Identifying Representatives
In Massive Data

Example: Identifying Representative
Images

• We are given a huge set X of images.
• Each image is stored multidimensional vector.
• We have a function d giving the difference between two images.
• We want to pick a set S of at most k images to minimize the loss

function:

• Suppose we choose a distinguished vector e0 (e.g. 0 vector), and
set:

• The function f is submodular. Our problem is then equivalent to
maximizing f under a single cardinality constraint.

Need for Parallelization

• Datasets grow very large

– TinyImages has 80M images

– Kosarak has 990K sets

• Need multiple machines to fit the dataset

• Use parallel frameworks such as MapReduce

Problem Definition

• Given set V and submodular function f

• Hereditary constraint I (cardinality at most k,
matroid constraint of rank k, …)

• Find a subset that satisfies I and maximizes f

• Parameters

– n = |V|

– k : max size of feasible solutions

– m : number of machines

Greedy Algorithm

Initialize S = {}

While there is some element x that can be
added to S:

Add to S the element x that maximizes the marginal
gain

Return S

Greedy Algorithm

• Approximation Guarantee:

• 1 - 1/e for a cardinality constraint

• 1/2 for a matroid constraint

• Runtime: O(nk)

• Need to recompute marginals each time an
element is added

• Not good for large data sets

Distributed Greedy

Mirzasoleiman, Karbasi, Sarkar, Krause '13

Performance of Distributed Greedy

• Only requires 2 rounds of communication

• Approximation ratio is:

 (where m is number of machines)

• If we use the optimal algorithm on each machine in
both phases, we can still only get:

Mirzasoleiman, Karbasi, Sarkar, Krause '13

Performance of Distributed Greedy

• If we use the optimal algorithm on each machine in
both phases, we can still only get:

• In fact, we can show that using greedy gives:

• Why?
– The problem doesn't have optimal substructure.
– Better to run greedy in round 1 instead of the optimal

algorithm.

Revisiting the Analysis

• Can construct bad examples for
Greedy/optimal

• Lower bound for any poly(k) coresets (Indyk
et al. ’14)

• Yet the distributed greedy algorithm works
very well on real instances

• Why?

Power of Randomness

• Randomized distributed Greedy

– Distribute the elements of V randomly in round 1

– Select the best solution found in rounds 1 & 2

• Theorem: If Greedy achieves a C
approximation, randomized distributed
Greedy achieves a C/2 approximation in
expectation.

Intuition

• If elements in OPT are selected in round 1
with high probability

– Most of OPT is present in round 2 so solution in
round 2 is good

• If elements in OPT are selected in round 1
with low probability

– OPT is not very different from typical solution so
solution in round 1 is good

Analysis (Preliminaries)

• Greedy Property:

– Suppose:

• x is not selected by greedy on S∪{x}

• y is not selected by greedy on S∪{y}

– Then:

• x and y are not selected by greedy on S∪{x,y}

• Lovasz extension : convex function on [0,1]V
that agrees with on integral vectors.

Analysis (Sketch)

• Let X be a random 1/m sample of V

• For e in OPT, let pe be the probability (over
choice of X) that e is selected by Greedy on
X∪{e}

• Then, expected value of elements of OPT on
the final machine is

• On the other hand, expected value of rejected
elements is

Analysis (Sketch)

The final greedy solution T satisfies:

The best single machine solution S satisfies:

Altogether, we get an approximation in expectation of:

Generality

• What do we need for the proof?

– Monotonicity and submodularity of f

– Heredity of constraint

– Greedy property

• The result holds in general any time greedy is
an -approximation for a hereditary,
constrained submodular maximization
problem.

Non-monotone Functions

• In the first round, use Greedy on each
machine

• In the second round, use any algorithm on the
last machine

• We still obtain a constant factor
approximation for most problems

Tiny Image Experiments

(n = 1M, m = 100)

Matroid Coverage (n=900, r=5) Matroid Coverage (n=100, r=100)

It's better to distribute ellipses from each location
across several machines!

Matroid Coverage Experiments

Future Directions

• Can we relax the greedy property further?

• What about non-greedy algorithms?

• Can we speed up the final round, or reduce
the number machines required?

• Better approximation guarantees?

