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Combinatorial Optimization 

• Given 
– A set of objects V 

– A function f on subsets of V 

– A collection of feasible subsets I 

• Find 
– A feasible subset of I that maximizes f 

• Goal 
– Abstract/general f and I 

– Capture many interesting problems 

– Allow for efficient algorithms 

 

 

 



Submodularity 

We say that a function                            is submodular if: 
  
 
We say that     is monotone if: 
 
 
Alternatively, f is submodular if: 
 
 

  for all                 and  
 
Submodularity captures diminishing returns. 



Submodularity 

Examples of submodular functions: 

– The number of elements covered by a collection of sets 

– Entropy of a set of random variables 

– The capacity of a cut in a directed or undirected graph 

– Rank of a set of columns of a matrix 

– Matroid rank functions 

– Log determinant of a submatrix 

 



Example: Multimode Sensor Coverage 

• We have distinct locations where we can place sensors 

• Each sensor can operate in different modes, each with a 
distinct coverage profile 

• Find sensor locations, each with a single mode to maximize 
coverage 



Example: Identifying Representatives 
In Massive Data 



Example: Identifying Representative 
Images 

• We are given a huge set X of images. 
• Each image is stored multidimensional vector. 
• We have a function d giving the difference between two images. 
• We want to pick a set S of at most k images to minimize the loss 

function: 
 
 
 

• Suppose we choose a distinguished vector e0 (e.g. 0 vector), and 
set: 
 
 

• The function f is submodular.  Our problem is then equivalent to 
maximizing f under a single cardinality constraint. 



Need for Parallelization 

• Datasets grow very large 

– TinyImages has 80M images 

– Kosarak has 990K sets 

• Need multiple machines to fit the dataset 

• Use parallel frameworks such as MapReduce 



Problem Definition 

• Given set V and submodular function f 

• Hereditary constraint I (cardinality at most k, 
matroid constraint of rank k, … ) 

• Find a subset that satisfies I and maximizes f 

• Parameters 

– n = |V| 

– k : max size of feasible solutions 

– m : number of machines 



Greedy Algorithm 

Initialize S = {} 

While there is some element x that can be 
added to S: 

Add to S the element x that maximizes the marginal 
gain 

Return S 



Greedy Algorithm 

• Approximation Guarantee: 

• 1 - 1/e for a cardinality constraint 

• 1/2 for a matroid constraint 

• Runtime: O(nk) 

• Need to recompute marginals each time an 
element is added 

• Not good for large data sets 

 



Distributed Greedy 
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Performance of Distributed Greedy 

• Only requires 2 rounds of communication 

• Approximation ratio is: 

 

 

  (where m is number of machines) 

• If we use the optimal algorithm on each machine in 
both phases, we can still only get: 
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Performance of Distributed Greedy 

• If we use the optimal algorithm on each machine in 
both phases, we can still only get: 

 
 

• In fact, we can show that using greedy gives: 
 
 

• Why?  
– The problem doesn't have optimal substructure. 
– Better to run greedy in round 1 instead of the optimal 

algorithm. 



Revisiting the Analysis 

• Can construct bad examples for 
Greedy/optimal 

• Lower bound for any poly(k) coresets (Indyk 
et al. ’14) 

• Yet the distributed greedy algorithm works 
very well on real instances 

• Why? 



Power of Randomness 

• Randomized distributed Greedy 

– Distribute the elements of V randomly in round 1 

– Select the best solution found in rounds 1 & 2 

• Theorem: If Greedy achieves a C 
approximation, randomized distributed 
Greedy achieves a C/2 approximation in 
expectation. 



Intuition 

• If elements in OPT are selected in round 1 
with high probability 

– Most of OPT is present in round 2 so solution in 
round 2 is good 

• If elements in OPT are selected in round 1 
with low probability 

– OPT is not very different from typical solution so 
solution in round 1 is good 



Analysis (Preliminaries) 

• Greedy Property: 

– Suppose: 

• x is not selected by greedy on S∪{x}  

• y is not selected by greedy on S∪{y} 

– Then: 

• x and y are not selected by greedy on S∪{x,y} 

• Lovasz extension    : convex function on [0,1]V 
that agrees with    on integral vectors. 



Analysis (Sketch) 

• Let X be a random 1/m sample of V 

• For e in OPT, let pe be the probability (over 
choice of X) that e is selected by Greedy on 
X∪{e} 

• Then, expected value of elements of OPT on 
the final machine is  

• On the other hand, expected value of rejected 
elements is 



Analysis (Sketch) 

The final greedy solution T satisfies: 

 

 

The best single machine solution S satisfies: 

 

 

Altogether, we get an approximation in expectation of: 



Generality 

• What do we need for the proof? 

– Monotonicity and submodularity of f 

– Heredity of constraint 

– Greedy property 

• The result holds in general any time greedy is 
an    -approximation for a hereditary, 
constrained submodular maximization 
problem. 



Non-monotone Functions 

• In the first round, use Greedy on each 
machine 

• In the second round, use any algorithm on the 
last machine 

• We still obtain a constant factor 
approximation for most problems 

 



Tiny Image Experiments  

(n = 1M, m = 100) 



Matroid Coverage (n=900, r=5) Matroid Coverage (n=100, r=100) 

It's better to distribute ellipses from each location 
across several machines! 

Matroid Coverage Experiments 



Future Directions 

• Can we relax the greedy property further? 

• What about non-greedy algorithms? 

• Can we speed up the final round, or reduce 
the number machines required? 

• Better approximation guarantees? 


