
Trusting the Cloud with

Practical Interactive Proofs

Graham Cormode
G.Cormode@warwick.ac.uk

Amit Chakrabarti (Dartmouth)

Andrew McGregor (U Mass Amherst)

Justin Thaler (Harvard/Yahoo!)

Suresh Venkatasubramanian (Utah)

There are no guarantees in life

 From the terms of service of a certain cloud computing service...

 Can we obtain guarantees of correctness of the computation?

– Without repeating the computation?

– Without storing all the input?

Interactive Proofs

What’s the answer?

42

Prove it!

1010101001000110110101100010001

110101?

11010010001000110101010010001101

OK!

(Streaming) Interactive Proofs

 Two party-model: outsource to a more powerful “prover”

– Fundamental problem: how to be sure that the prover is honest?

 Prover provides “proof” of the correct answer

– Ensure that “verifier” has very low probability of being fooled

– Measure resources of the participants, rounds of interaction

– Related to communication complexity Arthur-Merlin model, and
Algebrization, with additional streaming constraints

 Data Stream

P
V “Proof”

Starter Problem: Index

 Fundamental (hard) problem in data streams

– Input is a length m binary string x followed by index y

– Desired output is x[y]

– Requires (m) space even allowing error probability

 Can we find a protocol to allow recovery of arbitrary bits

– Without having the verifier store the entire sequence?

0 1 1 1 0 1 0 1 1 0 0 0 0 … 1258914

Real problem: Nearest neighbor

Parameters

 m data points (m very large)

– Verifier V processes data using small space << m

– Prover P processes data using space at least m

 V and P have a conversation to determine the answer

– If P is honest, 0.99 probability that V accepts the answer

– If P is dishonest, 0.99 probability that V rejects the answer

– Measure the space used by V, P, communication used by both

Data Stream

P
V

“Proof”

Space p Space v

Communication h

Index: 1 Round Upper Bound

 Divide the bit string into blocks of H bits

 Verifier remembers a hash on each block

 After seeing index, Prover replays its block

 Verifier checks hash agrees, and outputs x[y]

 Cost: H bits of proof from the prover, V = m/H hashes

– So HV = O(m log m), any point on tradeoff is possible

0 1 1 1 0 1 0 1 1 0 0 0 0 …

hash1 hash2 hash3 0 1 0 1

2 Round Index Protocol

Data indexed
in Boolean
hypercube {0,1}b

Extended to
hypercube Fb

Challenge line l

Query
point y

Random point r  Fb

1. V picks r and evaluates low-
degree extension of input at r
to get q

2. V sends l to P

3. P sends polynomial p’ which
is input restricted to l

4. V checks that p’(r) = q, and
outputs p’(y)

Streaming LDE Computation

 Given query point r  Fb, evaluate extension of input at r

 Initialize: z = 0

 Update with impact of each data point y=(y1, … yb) in turn.
Structure of polynomial means update causes

 z  z + i =1

b ((1-yi)(1-ri) + yiri)

– Lagrange polynomial, can be evaluated in small space

 Can be computed quickly, using appropriate precomputed
look-up tables

Correctness and Cost

 Correctness of the protocol

– If P is honest: V will always accept

– If P is dishonest: V only accepts if p’(r) = q
This happens with probability b/|F|: can make |F| bigger

 Costs of the protocol

– V’s space: O(b log |F|) = O(log n log log n) bits

– P and V exchange l and p’ as (b + 1) values in F,
so communication cost is O(log n log log n) bits

– Exponential improvement over one round

 Consequences: can do other computations via Index e.g. median

– What about more complex functions?

Nearest Neighbour Search

 Basic idea: convert NNS into an (enormous) index problem

– Work with input points in [n]d

– Assume all distances are multiples of  = 1/nd

 Let B = {all distinct balls}; note |B|  n2d

– Convert input points to virtual set of balls from B:

– point x  all balls  such that x  

 V processes virtual stream  through index protocol

 For query y  X, P specifies point z  X, claiming z = NN(y,X)

– Show ball(z,0)   via Index Protocol

– And ball(z, dist(y, z)-)   via Index Protocol

 Protocol allows correct demonstration of nearest neighbour

 Drawback: blow-up of input size costs V a lot!

Practical Proof Protocol

 Exploit structure of the metric space containing the points

– Let (,x) be the function that reports 1 iff x is in ball 

– Goal: query the vector v[] = x in input (,x)

– (,x) has a simple circuit for common metrics (Hamming, L1, L2…)

– “Arithmetize” the formula to compute distances

 Transform formula  to polynomial ’ via

 G1  G2  G’1 G’2 and G1  G2  1-(1-G’1)(1-G’2)

 Low-degree extension of v: v’(B1… B2d log n) = x ’(B1 … B2d log n, x)

– Can then apply Index protocol to v’ – v never materialized by P or V

 Final costs of the protocol:

– Verifier can process each data point in time poly(d,log n)

– Communication cost and verifier space both poly(d,log m,log n) bits

Concluding Remarks

 These protocols are truly practical

– No, really, they are

 Also provide insight into the theory of
Arthur-Merlin communication games

 Many open problems around this area

– Extend to other data mining/machine learning problems

– Prove lower bounds: some problems are hard

– Evaluations on real data, optimization of implementations

– Variant models: power of two provers…

