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RLA and SGD

I SGD (Stochastic Gradient Descent) methods1

I Widely used in practice because of their scalability, efficiency,
and ease of implementation.

I Work for problems with general convex objective function.
I Usually provide an asymptotic bounds on convergence rate.
I Typically formulated in terms of differentiability assumptions,

smoothness assumptions, etc.

I RLA (Randomized Linear Algebra) methods2

I Better worst-case theoretical guarantees and better control
over solution precision.

I Less flexible (thus far), e.g., in the presence of constraints.
I E.g., may use interior point method for solving constrained

subproblem, and this may be less efficient than SGD.
I Typically formulated (either TCS-style or NLA-style) for

worst-case inputs.

1
SGD: iteratively solve the problem by approximating the true gradient by the gradient at a single example.

2
RLA: construct (with sampling/projections) a random sketch, and use that sketch to solve the subproblem or

construct preconditioners for the original problem.
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Can we get the “best of both worlds”?

Consider problems where both methods have something nontrivial to say.

Definition
Given a matrix A ∈ Rn×d , where n� d , a vector b ∈ Rn, and a number
p ∈ [1,∞], the overdetermined `p regression problem is

min
x∈Z

f (x) = ‖Ax − b‖p.

Important special cases:

I Least Squares: Z = Rd and p = 2.

I Solved by eigenvector methods with O(nd2) worst-case
running time; or by iterative methods for which the running
time depending on κ(A).

I Least Absolute Deviations: Z = Rd and p = 1.

I Unconstrained `1 regression problem can be formulated as a
linear program and solved by an interior-point method.
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Deterministic `p regression as stochastic optimization

I Let U ∈ Rn×d be a basis of the range space of A in the form of
U = AF , where F ∈ Rd×d .

I The constrained overdetermined (deterministic) `p regression
problem is equivalent to the (stochastic) optimization problem

min
x∈Z
‖Ax − b‖pp = min

y∈Y
‖Uy − b‖pp

= min
y∈Y

Eξ∼P [H(y , ξ)] ,

where H(y , ξ) =
|Uξy−bξ|p

pξ
is the randomized integrand and ξ is a

random variable over {1, . . . , n} with distribution P = {pi}ni=1.

I The constraint set of y is given by Y = {y ∈ Rd |y = F−1x , x ∈ Z}.
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Brief overview of stochastic optimization

The standard stochastic optimization problem is of the form

min
x∈X

f (x) = Eξ∼P [F (x , ξ)] , (1)

where ξ is a random data point with underlying distribution P.

Two computational approaches for solving stochastic optimization problems
of the form (1) based on Monte Carlo sampling techniques:

I SA (Stochastic Approximation):

I Start with an initial weight x0, and solve (1) iteratively.
I In each iteration, a new sample point ξt is drawn from

distribution P and the current weight is updated by its
information (e.g., (sub)gradient of F (x , ξt)).

I SAA (Sampling Average Approximation):

I Sample n points from distribution P independently, ξ1, . . . , ξn,
and solve the Empirical Risk Minimization (ERM) problem,

min
x∈X

f̂ (x) =
1

n

n∑
i=1

F (x , ξi ).
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Solving `p regression via stochastic optimization

To solve this stochastic optimization problem, typically one needs to
answer the following three questions.

I (C1): How to sample: SAA (i.e., draw samples in a batch mode
and deal with the subproblem) or SA (i.e., draw a mini-batch of
samples in an online fashion and update the weight after extracting
useful information)?

I (C2): Which probability distribution P (uniform distribution or not)
and which basis U (preconditioning or not) to use?

I (C3): Which solver to use (e.g., how to solve the subproblem in
SAA or how to update the weight in SA)?
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A unified framework for RLA and SGD
(“Weighted SGD for Lp Regression with Randomized Preconditioning,” Yang, Chow, Re, and Mahoney, 2015.)

`p regression
minx ‖Ax − b‖pp

stochastic optimization

miny Eξ∼P [|Uξy − bξ|p/pξ]

SA

SA

SAA

onlin
e

online

batch

(C1): How to sample?

uniform P
U = Ā

non-uniform P
well-conditioned U

non-uniform P
well-conditioned U

naive

using RLA

using RLA

(C2): Which U and P to use?

gradient descent

gradient descent

exact solution
of subproblem

fast

fast

slow

(C3): How to solve?

vanilla SGD

pwSGD
(this presentation)

vanilla RLA with
algorithmic leveraging

resulting solver

I SA + “naive” P and U: vanilla SGD whose convergence rate depends (without
additional niceness assumptions) on n

I SA + “smart” P and U: pwSGD
I SAA + “naive” P: uniform sampling RLA algorithm which may fail if some

rows are extremely important (not shown)
I SAA + “smart” P: RLA (with algorithmic leveraging or random projections)

which has strong worst-case theoretical guarantee and high-quality numerical
implementations

I For unconstrained `2 regression (i.e., LS), SA + “smart” P + “naive” U
recovers weighted randomized Kaczmarz algorithm [Strohmer-Vershynin].
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A combined algorithm: pwSGD
(“Weighted SGD for Lp Regression with Randomized Preconditioning,” Yang, Chow, Re, and Mahoney, 2015.)

pwSGD:
Preconditioned weighted SGD consists of two main steps:

1. Apply RLA techniques for preconditioning and construct an
importance sampling distribution.

2. Apply an SGD-like iterative phase with weighted sampling on
the preconditioned system.
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A closer look: “naive” choices of U and P in SA

Consider solving `1 regression; and let U = A.
If we apply the SGD with some distribution P = {pi}ni=1, then the relative
approximation error is

f (x̂)−f (x∗)

f (x̂)
=O

(
‖x∗‖2 ·max1≤i≤n‖Ai‖1/pi

‖Ax∗ − b‖1

)
,

where f (x) = ‖Ax − b‖1 and x∗ is the optimal solution.

I If {pi}ni=1 is the uniform distribution, i.e., pi = 1
n

, then

f (x̂)−f (x∗)

f (x̂)
= O

(
n
‖x∗‖2 ·M
‖Ax∗ − b‖1

)
,

where M = max1≤i≤n ‖Ai‖1 is the maximum `1 row norm of A.

I If {pi}ni=1 is proportional to the row norms of A, i.e., pi = ‖Ai‖1∑n
i=1 ‖Ai‖1

, then

f (x̂)−f (x∗)

f (x̂)
= O

(
‖x∗‖2 · ‖A‖1

‖Ax∗ − b‖1

)
.

In either case, the expected convergence time for SGD might blow up (i.e., grow
with n) as the size of the matrix grows (unless one makes extra assumptions).
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A closer look: “smart” choices of U and P in SA

I Recall that if U is a well-conditioned basis, then (by definition)
‖U‖1 ≤ α and ‖y∗‖∞ ≤ β‖Uy∗‖1, for α and β depending on the
small dimension d and not the large dimension n.

I If we use a well-conditioned basis U for the range space of A, and if
we choose the sampling probabilities proportional to the row norms
of U, i.e., leverage scores of A, then the resulting convergence rate
on the relative error of the objective becomes

f (x̂)−f (x∗)

f (x̂)
= O

(
‖y∗‖2 · ‖U‖1

‖Ūy∗‖1

)
.

where y∗ is an optimal solution to the transformed problem.

I Since the condition number αβ of a well-conditioned basis depends
only on d , it implies that the resulting SGD inherits a convergence
rate in a relative scale that depends on d and is independent of n.
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A combined algorithm: pwSGD
(“Weighted SGD for Lp Regression with Randomized Preconditioning,” Yang, Chow, Re, and Mahoney, 2015.)

1. Compute R ∈ Rd×d such that U = AR−1 is an (α, β) well-conditioned
basis U for the range space of A.

2. Compute or estimate ‖Ui‖pp with leverage scores λi , for i ∈ [n].

3. Let pi = λi∑n
j=1 λj

, for i ∈ [n].

4. Construct the preconditioner F ∈ Rd×d based on R.

5. For t = 1, . . . ,T
Pick ξt from [n] based on distribution {pi}ni=1.

ct =

{
sgn (Aξt xt − bξt ) /pξt if p = 1;

2 (Aξt xt − bξt ) /pξt if p = 2.

Update x by

xt+1 =

xt − ηctH−1Aξt if Z = Rd ;

arg min
x∈Z

ηctAξt x + 1
2
‖xt − x‖2

H otherwise.

where H =
(
FF>

)−1
.

6. x̄ ← 1
T

∑T
t=1 xt .

7. Return x̄ for p = 1 or xT for p = 2.
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Some properties of pwSGD
(“Weighted SGD for Lp Regression with Randomized Preconditioning,” Yang, Chow, Re, and Mahoney, 2015.)

pwSGD has the following properties:

I It preserves the simplicity of SGD and the high quality theoretical
guarantees of RLA.

I After “batch” preconditioning (on arbitrary input), unlike vanilla SGD,
the convergence rate of the SGD phase only depends on the low
dimension d , i.e., it is independent of the high dimension n.

I Such SGD convergence rate is superior to other related SGD algorithm
such as the weighted randomized Kaczmarz algorithm.

I For `1 regression with size n by d , pwSGD returns an approximate
solution with ε relative error in the objective value in
O(log n · nnz(A) + poly(d)/ε2) time (for arbitrary input).

I For `2 regression, pwSGD returns an approximate solution with ε relative
error in the objective value and the solution vector measured in prediction
norm in O(log n · nnz(A) + poly(d) log(1/ε)/ε) time.

I Empirically, pwSGD performs favorably compared to other competing
methods, as it converges to a medium-precision solution, e.g., with ε
roughly 10−3, much more quickly.
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Main theoretical bound (`1 Regression)

Let f (x) = ‖Ax − b‖1 and suppose f (x∗) > 0. Then there exists a
step-size η such that after

T = d κ̄2
1(U)κ̂2(RF )

c2
1c2c

2
3

ε2

iterations, pwSGD returns a solution vector estimate x̄ that satisfies the
expected relative error bound

E [f (x̄)]− f (x∗)

f (x∗)
≤ ε.

(Above, c1 = 1+γ
1−γ , c2 =

‖x∗−x0‖2
H

‖x∗‖2
H

, c3 = ‖Ax∗‖1/f (x∗) and κ̂2(RF )

relates to the condition number of RF . )

Recall: κ̄2
1(U) is the condition number of the basis computed, which only

depends on d ; F is the preconditioner; γ is the quality of the approximate
leverage scores.
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Main theoretical bound (`2 Regression)
Let f (x) = ‖Ax − b‖2 and suppose f (x∗) > 0. Then there exists a step-size η
such that after

T = c1κ̄
2
2(U)κ2(RF ) · log

(
2c2κ(U)κ2(RF )

ε

)
·
(

1 +
κ2(U)κ2(RF )

c3ε

)
iterations, pwSGD returns a solution vector estimate xT that satisfies the
expected relative error bound

E
[
‖A(xT − x∗)‖2

2

]
‖Ax∗‖2

2

≤ ε.

Furthermore, when Z = Rd and F = R−1, there exists a step-size η such that
after

T = c1κ̄
2
2(U) · log

(
c2κ(U)

ε

)
·
(

1 +
2κ2(U)

ε

)
iterations, pwSGD returns a solution vector estimate xT that satisfies the
expected relative error bound

E [f (xT )]− f (x∗)

f (x∗)
≤ ε.

(Above, c1 = 1+γ
1−γ , c2 =

‖x∗−x0‖2
H

‖x∗‖2
H

, c3 = ‖Ax∗‖2
2/f (x∗)2. )
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Discussion on the choice of the preconditioner F

I Essentially, the convergence rates rely on κ(RF ). In general, there is
a tradeoff between the convergence rate and the computation cost
among the choices of the preconditioner F .

I When F = R−1, the term κ(RF ) vanishes in the error bounds;
however, an additional O(d2) cost per iteration is needed in the
SGD update.

I When F = I , no matrix-vector multiplication is needed when
updating x ; however, κ(R) ≈ κ(A) can be arbitrarily large, and this
might lead to an ungraceful performance in the SGD phase.

I One can also choose F to be a diagonal preconditioner D, which
scales R to have unit column norms. Theoretical results indicate
that κ(RD) ≤ κ(R), while the additional cost per iteration to
perform SGD updates with diagonal preconditioner is O(d).
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Complexities

There exist choices of the preconditioner such that, with constant probability,
one of the following events holds for pwSGD with F = R−1. To return a
solution x̃ with relative error ε on the objective,

I It runs in time(R) +O(log n · nnz(A) + d3κ̄1(U)/ε2) for unconstrained `1

regression.

I It runs in time(R) +O(log n · nnz(A) + timeupdate · d κ̄1(U)/ε2) for
constrained `1 regression.

I It runs in time(R) +O(log n · nnz(A) + d3 log(1/ε)/ε) for unconstrained
`2 regression.

I It runs in time(R) +O(log n · nnz(A) + timeupdate · d log(1/ε)/ε2) for
constrained `2 regression.

In the above, time(R) denotes the time for computing the matrix R and
timeupdate denotes the time for solving the optimization problem in update rule
of pwSGD (quadratic objective with the same constraints).
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Complexity comparisons

solver complexity (general) complexity (sparse)

RLA time(R) +O(nnz(A) log n + κ̄
3
2
1 d

9
2 /ε3) O(nnz(A) log n + d

69
8 log

25
8 d/ε

5
2 )

randomized IPCPM time(R) + nd2 +O((nd + poly(d)) log(κ̄1d/ε)) O(nd log(d/ε))

pwSGD time(R) +O(nnz(A) log n + d3κ̄1/ε
2) O(nnz(A) log n + d

13
2 log

5
2 d/ε2)

Table: Summary of complexity of several unconstrained `1 solvers that use randomized linear algebra. The
target is to find a solution x̂ with accuracy (f (x̂)− f (x∗))/f (x∗) ≤ ε, where f (x) = ‖Ax − b‖1. We assume

that the underlying `1 regression solver in RLA with algorithmic leveraging algorithm takes O(n
5
4 d3) time to

return a solution. Clearly, pwSGD has a uniformly better complexity than that of RLA methods in terms of both d
and ε, no matter which underlying preconditioning method is used.

solver complexity (SRHT) complexity (CW)

low-precision (projection) O
(
nd log(d/ε) + d3 log(nd)/ε

)
O
(

nnz(A) + d4/ε2
)

low-precision (sampling) O
(
nd log n + d3 log d + d3 log d/ε

)
O
(

nnz(A) log n + d4 + d3 log d/ε
)

high-precision solvers O
(
nd log d + d3 log d + nd log(1/ε)

)
O
(

nnz(A) + d4 + nd log(1/ε)
)

pwSGD O
(
nd log n + d3 log d + d3 log(1/ε)/ε

)
O
(

nnz(A) log n + d4 + d3 log(1/ε)/ε
)

Table: Summary of complexity of several unconstrained `2 solvers that use randomized linear algebra. The
target is to find a solution x̂ with accuracy (f (x̂)− f (x∗))/f (x∗) ≤ ε, where f (x) = ‖Ax − b‖2. When

d ≥ 1/ε and n ≥ d2/ε, pwSGD is asymptotically better than the solvers listed above.
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Connection to weighted randomized Kaczmarz algorithm

I Our algorithm pwSGD for least-squares regression is related to the
weighted randomized Kaczmarz (RK) algorithm [Strohmer and
Vershynin].

I Weighted RK algorithm can be viewed as an SGD algorithm with
constant step-size that exploits a sampling distribution based on row
norms of A, i.e., pi = ‖Ai‖2

2/‖A‖2
F .

I In pwSGD, if the preconditioner F = R−1 is used and the leverage scores
are computed exactly, the resulting algorithm is equivalent to applying the
weighted randomized Karczmarz algorithm on a well-conditioned basis U.

I Theoretical results indicate that weighted RK algorithm inherits a
convergence rate that depends on condition number κ(A) times the
scaled condition number κ̄2(A).

I The advantage of preconditioning in pwSGD is reflected here since
κ(U) ≈ 1 and κ̂2(U) ≈

√
d .
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Comparison of convergence rates
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Figure: Convergence rate comparison of several SGD-type algorithms for
solving `2 regression on two synthetic datasets with condition number around 1
and 5, respectively. For each method, the optimal step-size is set according to
the theory with target accuracy |f (x̂)− f (x∗)|/f (x∗) = 0.1. The y -axis is
showing the relative error on the objective, i.e., |f (x̂)− f (x∗)|/f (x∗).
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On datasets with increasing condition number
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Figure: Convergence rate comparison of several SGD-type algorithms for
solving `2 regression on synthetic datasets with increasing condition number.
For each method, the optimal step-size is set according to the theory with
target accuracy |f (x̂)− f (x∗)|/f (x∗) = 0.1. The y -axis is showing the
minimum number of iterations for each method to find a solution with the
target accuracy.
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Time-accuracy tradeoffs for `2 regression
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(a) `2 regression
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Figure: Time-accuracy tradeoffs of several algorithms including pwSGD with
three different choices of preconditioners on year dataset.
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Time-accuracy tradeoffs for `1 regression
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Figure: Time-accuracy tradeoffs of several algorithms including pwSGD with
three different choices of preconditioners on year dataset.
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Remarks

Compared with general RLA methods:

I For `2 regression, for which traditional RLA methods are well
designed, pwSGD has a comparable complexity.

I For `1 regression, due to efficiency of SGD update, pwSGD
has a strong advantage over traditional RLA methods.

Compared with general SGD methods:

I The RLA-SGD hybrid algorithm pwSGD works for problems
in a narrower range, i.e., `p regression, but inherits the strong
theoretical guarantees of RLA.

I Comparison with traditional SGD methods (convergence
rates, etc.) depends on the specific objectives of interest and
assumptions made.
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Question

After viewing RLA and SGD from the stochastic optimization
perspective and using that to develop our main algorithm, a
natural question arises:

Can we do this for other optimization/regression problems?

To do so, we need to define “leverage scores” for them, since these
scores play a crucial role in this stochastic framework.
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Coreset methods

I In [Feldman and Langberg, 2011], the authors propose a framework
for computing a “coreset” of F to a given optimization problem of
the following form,

cost(F , x) = min
x∈X

∑
f∈F

f (x),

where F is a set of function from a set X to [0,∞).

I Let Ā =
(
A b

)
. The `p regression problem can be written as

min
x∈C

n∑
i=1

fi (x),

where fi (x) = |Āix |p, in which case one can define a set of functions
F = {fi}ni=1.
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A few notions

Sensitivities
Given a set of function F = {f } with size n, the sensitivity m(f ) of each

function is defined as m(f ) = bsupx∈X n · f (x)
cost(F,x)c+ 1, and the total

sensitivity M(F) of the set of functions is defined as
M(F) =

∑
f∈F m(f ).

Dimension of subspaces
The dimension of F is defined as the smallest integer d , such that for
any G ⊂ F ,

|{Range(G , x , r)|x ∈ X , r ≥ 0}| ≤ |G |d ,

where Range(G , x , r) = {g ∈ G |g(x) ≤ r}.
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Algorithm for computing a coreset

1. Initialize D as an empty set.

2. Compute the sensitivity m(f ) for each function f ∈ F .

3. M(F)←
∑

f ∈F m(f ).

4. For f ∈ F
Compute probabilities

p(f ) =
m(f )

M(F)
.

5. For i = 1, . . . , s
Pick f from F with probability p(f ).
Add f /(s · p(f )) to D.

6. Return D.
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Theoretical guarantee

Theorem
Given a set of functions F from X to [0,∞], if

s ≥ cM(F)
ε2 (dim(F ′) + log

(
1
δ

)
), then with probability at least 1− δ,

the coreset method returns ε-coreset for F .
That is,

(1− ε)
∑
f ∈F

f (x) ≤
∑
f ∈D

f (x) ≤ (1 + ε)
∑
f ∈F

f (x).
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Connection with RLA methods
(“Weighted SGD for Lp Regression with Randomized Preconditioning,” Yang, Chow, Re, and Mahoney, 2015.)

Fact. Coreset methods coincides the RLA algorithmic leveraging approach on LA
problems; sampling complexities are the same up to constants!
We show that, when applied to `p regressions,

I Given Ā ∈ Rn×(d+1), let fi (x) = |Āix |p , for i ∈ [n].
Let λi be the i-th leverage score of Ā. Then,

m(fi ) ≤ nβpλi + 1,

for i ∈ [n], and
M(F) ≤ n((αβ)p + 1).

This implies the notion of leverage score in RLA is equivalent to the notion of
sensitivity in coreset method!

I Let A = {|aT x |p |a ∈ Rd}. We have

dim(A) ≤ d + 1.

This relation and the above theorem imply that the coreset method coincides
with the RLA with algorithmic leveraging on RLA problems; sampling
complexities are the same up to constants!
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A negative result

I Beyond `p regression, coreset methods work for any kind of convex
loss function.

I Since it depends on the total sensitivity, however, the coreset does
not necessarily have small size.

I E.g., for hinge loss, we have the following example showing that the
size of the coreset has a exponential dependency on d .

Negative example
Define fi (x) = f (x , ai ) = (xTai )

+ where x , ai ∈ Rd for i ∈ [n].
There exists a set of vectors {ai}di=1 such that the total sensitivity of
F = {fi}ni=1 is approximately 2d .
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Conclusion

General conclusions:

I Smart importance sampling or random projections needed for good
worst-case bounds for machine learning kernel methods

I Data are often—but not always—preprocessed to be “nice,” and popular
ML metrics often insensitive to a few bad data points

I RLA/SGD are very non-traditional approaches to NLA/optimization; and
they can be combined using ideas from stochastic optimization.

Specific conclusions:

I We propose a novel RLA-SGD hybrid algorithm called pwSGD.

I After a preconditioning step and constructing a non-uniform sampling
distribution with RLA, its SGD phase inherits fast convergence rates that
only depend on the lower dimension of the input matrix.

I Several choices for the preconditioner, with tradeoffs among the choices.

I Empirically, it is preferable when a medium-precision solution is desired.

I Lower bounds on the coreset complexity for more general regression
problems, which point to specific directions for to extend these results.
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