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Distributed mean estimation

Big Datal
Distributed Storage
and Processing

Statistical estimation:

— Unknown parameter 6.
small

— Inputs to machines: i.i.d. data dataw
points ~ Dgy.

small
-~ data

— Output estimator 6.

Objectives:
— Low communication C = |II].
— Small loss

R=E|[|6-0|]




Goal: yted sparse Gaussian
estimate

0, ...,0,) Nean estimation

e Ambient dimension d.

e Sparsity parameter k: ||0]|, < k.
e Number of machines m.

e Each machine holds n samples.
e Standard deviation o.

e Thus each sample is a vector

X9 ~ (W(8y,02), .., N (84,02)) € R



Goal:
estimate

CIn
e Ambient dimension d. harder

e Sparsity parameter k: ||0]|, < k.  harder

Higher value makes
estimation:

e Number of machines m. easier*
e Each machine holds n samples. easier
e Standard deviation o. harder

e Thus each sample is a vector
X9 ~ (W(8y,02), .., N (84,02)) € R



Distributed sparse Gaussian
mean estimati StatisticaIJ

e Main result: if |II| = C, imit
RZQ(max( * d=dim
e k —sparsity
. : e m —machine
e Tight up to alog d factor . 1—samp. each

[GMN14]. Up to a const. * 0 —deviation
factor in the dense case. SR e

e For optimal performance,
C = md (not mk) is needed!



Prior work (partial list)

[Zhang-Duchi-Jordan-Wainwright’13]: the case
when d = 1 and general communication; and the
dense case for simultaneous-message protocols.

[Shamir’14]: Implies the result for k = 1 in a
restricted communication model.

[Duchi-Jordan-Wainwright-Zhang'14, Garg-Ma-
Nguyen’14]: the dense case (up to logarithmic
factors).

A lot of recent work on communication-efficient
distributed learning.



Reduction from Gaussian mean

detection
=0 (s (% 22)

e Gaussian mean detection
— A one-dimensional problem.

— Goal: distinguish between py = N (0,02) and
U1 = N(5, 0-2).

— Each player gets n samples.



2 2
e Assume R <« max (G ,G k)
ncC "~ nm
e Distinguish between uy = NV (0,0%) and

H1 = N(6, 0-2)'

. 1 .
e Theorem: If can attain R < 1—6k52 in the

estimation problem using C
communication, then we can solve the
detection problem at ~ C/d min-
information cost.

e Using 6% < 04d/(C n), get detection using
2
| K

o e .
—7 min-information cost.
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The detection problem

e Distinguish between uy, = N'(0,1) and
U1 = N(6, 1)
e Each player gets n samples.

1
n 62

e Want this to be impossible using [ <
min-information cost.



The detection problem

Dictinguich | — A(01) and
=N L5 D

e Distinguish between uy = N (O, %) and
= (5.2)

e Each player gets rn-samples: one sample.
1

n o2

e \Want this to be impossible using I «<
min-information cost.
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The detection problem

e By scaling everything by +/n (and replacing
5 with 6y/n).

e Distinguish between uy, = N'(0,1) and
U1 = N((S, 1)

e Each player gets one sample.

e \Want this to be impossible using I «< é

min-information cost.
Tight (for m large enough,

otherwise task impossible)



Information cost

Uy = N(@V, 1) |4
—
X1~ Uy Ko~ Uy - Xm ~ Uy

'N/

Blackboard II
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Min-Information cost

N\,
X1~ Uy Ko~ Uy - Xm ~ Uy

'N/

Blackboard II

minlC () := vrer%(i)nl}I(H;Xle WX |V =v)
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Min-Information cost

minlC () := vrer%(i)nl}I(H;Xle WX |V = 1)

e We will want this quantity to be () (5—12)

e Warning: it is not the same thing as
(G XXy o X V)= By 1L X1 Xy . X |V = V)
because one case can be much smaller than the
other.
e |n our case, the need to use minIC instead of
IC happens because of the sparsity.
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Strong data processing inequality

Blackboard II

Fact: |IT| = I(IL; X1 X5 ... Xp) = 20 TG X | X <)



Strong data processing inequality

o 1, = N(8V,1); suppose V ~ By ;.
e Foreachi, IV — X; — Il is a Markov chain.

e |ntuition: “X; contains little information about
I/, no way to learn this information except by
learning a lot about X;”.

e Data processing: [(V;11) < I(X;; I1).
e Strong Data Processing: I(V;I1) < B - I(X;; 1)
forsome f = [ (ug, 1) < 1.

16



Strong data processing inequality

o 1, = N(8V,1); suppose V ~ By ;.

e Foreachi, IV — X; — Il is a Markov chain.

e Strong Data Processing: I(V;I1) < B - I(X;; 1)
forsome f = [ (ug, u1) < 1.

e In this case (uy = N(0,1), u;y = N(6,1)):

I(V; sign(Xl-))

52
I(X;; sign(X;))

B (1o, 1) ~

17



“Proof”
° 1, = N(8V,1); suppose V ~ By ;.
e Strong Data Processing: [(V;11) < §4 - I(X;; I1)
e We know I(V; 1) = Q(1).

1
1] = 1(T; X1 X o Xin) >21(H X) 25

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

%1(Vn)=n(§)QED' ..................
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Issues with the proof

e The right high level idea.

e Two main issues:

— Not clear how to deal with additivity over
coordinates.

— Dealing with minIC instead of IC.
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If the picture were this...

Mva(SV,l) |4
N\,
X1~ Uy Xy~ Uy —-m Xm ~ U

Blackboard II

Then indeed I(I1; V) < 6% - I(IT; X,).

20



Hellinger distance

e Solution to additivity: using Hellinger

distance fﬂ(\/f(x) — w/g(x))zdx

e Following from [Jayram’09].
h% (M=o, y—1) ~ 1(V; 1) = Q(1)
o h*(Ily—g, IIy=1) decomposes into m
scenarios as above using the fact that Il is
a protocol.
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minlC

e Dealing with minIC is more technical. Recall:

e minIC(m) = vrer%(i)nl}I(H;Xle WX |V = 1)

e |eads to our main technical statement:
“Distributed Strong Data Processing Inequality

Theorem: Suppose Q(1) - ug < uy < 0(1) - Uy,

and let 5 (ug, u1) be the SDPI constant. Then

h? (My =g, My=1) < 0(,3(#0»#1)) - minlC(m)

7
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Putting it together

Theorem: Suppose Q(1) - ug < uy < 0(1) - Uy,
and let 5 (ug, 1) be the SDPI constant. Then

h2(My=g, My=1) < 0(B(uo, 1)) - minlC(m)

e With ug = N(0,1), uy = N(6,1), B ~ 6%, we

get O(1) = h*(Ily =g, [y=;) < 6% - minlC ()

e Therefore, minIC () = () (5_12)
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: : Essent@
Putting it togethe

Theorem: Suppofe Q(1) « gy < ,ul < 0(1) - uy,

and let 5 (ug, 1) be the StPi-ee —Tnen

h? (Tly—o, My 1) < 0(,3(110:#1)) minlC ()
e With up = N(0,1), uy = N(5,1)
e (1) g < uy <0(1) - g fails!!

e Need an additional truncation step. Fortunately,
the failure happens far in the tails.
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Summary

Hellinger . “Only get 6 bits
distance toward detection

per bit of minIC”"=

Strong data 1

_ an —; lower bound
processing 6

Reduction

[ZDJW’13] 1

CENElNuEER
detection (n — 1)
sample (minIC)

Sparse Gaussian A direct sum
mean estimation argument
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Distributed sparse linear regression

Each machine gets n data of the form (Af, yj),

where y/ = (47,0) + w/, w/ ~ NV (0,02)
Promised that 6 is k-sparse: ||0]|, < k.
Ambient dimension d.

Loss R = E|[|6 — 6]|°|

How much communication to achieve statistically

optimal loss?

26



Distributed sparse linear regression

e Promised that @ is k-sparse: ||@]|, < k.

e Ambient dimension d. Loss R = [E [H@ — 9”2].

e How much communication to achieve statistically
optimal loss?

e Weget: C = Q(m - min(n,d)) (small k doesn’t

nelp).

e [Lee-Sun-Liu-Taylor’15]: under some conditions
C = 0O(m - d) suffice.
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A new upper bound (time permitting)

e For the one-dimensional distributed
Gaussian estimation (generalizes to d
dimensions trivially).

e For optimal statistical performance, (0(m) is
the lower bound.

e We give a simple simultaneous-message
upper bound of O(m).

e Previously: multi-round O(m) [GMN’14] or
simultaneous O (mlogn) [folklore].
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A new upper bound (time permitting)
(Stylized) main idea:

e Each machine wants to send the empirical
average y; € [0,1] of its input.

| A
e Then the average — . y; =¥ is computed.

e |nstead of y; each machine sends b; sampled
from Bernoulli distribution B,, .

: A 1
e Form the estimate y = gz;ﬁl ;.

e “Good enough” if var(y;) ~ 1.
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Open problems

e Closing the gap for the sparse linear
regression problem.

e Other statistical questions in the
distributed framework. More general
theorems?

e Can Strong Data Processing be applied to
the two-party Gap Hamming Distance
problem?
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