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Abstract—At the port-of-entry containers are inspected 

through a specific sequence of sensor stations to detect the 
presence of nuclear materials, biological and chemical agents, 
and other illegal cargo. The inspection policy, which includes the 
sequence in which sensors are applied and the threshold levels 
used at the inspection stations, affects the probability of 
misclassifying a container as well as the cost and time spent in 
inspection. In this paper we consider a system operating with a 
Boolean decision function combining station results and present a 
multi-objective optimization approach to determine the optimal 
sensor arrangement and threshold levels while considering cost 
and time. The total cost includes cost incurred by 
misclassification errors and the total expected cost of inspection, 
while the time represents the total expected time a container 
spends in the inspection system. Examples which apply the 
approach in various systems are presented. 
 
Note to practitioners—Inspection of containers arriving at the 
port-of-entry is becoming a challenging problem as both the 
number of containers and inspection attributes of the 
containers increase. The sequence of inspections and the level 
of inspection have a major impact on the total cost of 
inspection and delay of containers at a port. This paper presents 
methods that search for the optimum threshold levels at 
inspection stations as well as the optimum inspection sequence 
to minimize the total cost and delays. Several methods are 
presented and their performances are compared. These 
methods provide the border protection and customs agencies 
with approaches based on theoretical foundations yet the 
results are readily applicable. 
 

Index Terms—Boolean function, probability of false accept, 
probability of false reject, sensor threshold levels, multi-objective 

I. INTRODUCTION 
HE significant increase in trade agreements and the growth 
in the world economy have propelled unprecedented 

increase in maritime traffic. The value of export goods 
produced and transported globally in 2000 is about $6.186 
trillion [1]. Disruption of such a system has catastrophic 
consequences on the world economy and our daily needs. In 
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order to minimize sources of disruptions, the United Nations 
passed several resolutions with the objective of improving 
security in maritime trade. Likewise, the United States initiated 
the Container Security Initiative (CSI) to ensure container 
security through different approaches starting from the origin 
port of the container and ending at the delivery port in the 
United States. One of these approaches involves the 
assignment of a “risk” factor associated with containers bound 
for the United States. Based on this factor, containers might be 
subjected to screening at the port of origin and might be 
“pre-cleared” for importation. Moreover, when containers 
arrive at United States ports they are subjected to further 
security inspection systems. Containers can be randomly 
selected and subjected to inspection at the port-of-entry. The 
type of inspections, number of containers to be inspected, and 
the inspection policy have a profound effect on the cost of the 
system, risk of accepting undesired containers and potential 
delays and congestion at the ports. 

In this paper we consider a port-of-entry (POE) container 
inspection system where a fraction of the arriving containers at 
a port is subjected to a sequence of inspections at different 
stations. A typical inspection system begins with radiation 
detection. Containers are driven through a Radiation Portal 
Monitor (RPM) at approximately five miles per hour, where 
radiation emissions are detected. The equipment is passive in 
that it absorbs radiation from containers as they pass through 
the RPM. A graphic profile of the radiation reading is produced 
and if the profile suggests the presence of radioactive material, 
an alarm is activated. Once an alarm is activated, the container 
is then subjected to further inspection to determine the source 
of radiation. This is usually accomplished by using a 
lightweight hand-held Radiation Isotope Identification Device 
(RIID) or an Advanced Spectroscopic Portal (ASP) to identify 
the radiation isotope. The RIID or ASP can differentiate from 
naturally occurring, harmless radiation emitted by materials 
such as: ceramic tile, granite, kitty litter, fertilizer, or food 
products containing potassium, including bananas or avocados. 
The RIID is more sensitive than the traditional Geiger counter, 
and takes an isotope reading to determine the type of radiation 
being emitted. The RIID is capable of distinguishing between 
naturally occurring or weapons grade radioactive and nuclear 
materials, including highly enriched uranium or plutonium 
used in nuclear devices [2]. 

There are two common approaches that use radiation for 
container inspection: the first is based on x-ray systems which 
generally take a few minutes to scan a standard 40-foot 
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container. More advanced x-ray systems can take only a few 
seconds [3]. However, total inspection cycle times may range 
from 7-15 minutes or longer due to image analysis. The second 
approach includes gamma-ray inspection systems. These 
systems directly use gamma-rays or use pulsed fast neutrons to 
generate gamma-rays to produce images of the container’s 
contents, 3-D mappings of content location, as well as other 
important information [4]. Unlike x-ray systems, the 
gamma-ray systems can scan standard 40-foot containers in a 
few seconds and generate a total inspection time of less than a 
minute [5]. The average inspection throughput of gamma-ray 
systems is more than 10 times greater than the fastest x-ray 
system [5]. 

Gamma-ray systems can cost from 3-20 times less than 
x-ray systems in terms of initial capital investment, 4-5 times 
less in terms of installation and when considering other 
benefits, gamma-ray systems can yield a cost per inspection 
that is 50 times less than that of conventional x-ray systems [6], 
[7]. 

In addition to inspecting containers for radioactive material 
and image analysis, the inspection stations may identify 
biological warfare agents by using biosensors, currently under 
research and ready for deployment on an experimental basis, 
that can detect trace amounts of viral or bacterial pathogens in 
situ and provide immediate analysis. The detection system uses 
chip-based technology, which requires low voltages and can 
easily be incorporated into portable, wireless devices [8]. Other 
equipment for detecting biological agents uses fluorescent 
particle counters for detecting airborne bacteria. In this case the 
threshold level of the decision is related to the count of these 
particles. Likewise, methods for detection of chemical agents, 
currently sarin, cyanide, and pesticides, may be applied at other 
inspection stations using different sensors [9]. 

Researchers have investigated the problem of container 
inspection with different objectives. Lewis et al. [10] develop a 
best-first heuristic search procedure to model the problem of 
moving containers from inbound ships to staging areas where 
security inspections can occur and moving containers from 
staging areas and areas where security inspections have been 
completed to outbound ships. The inspection procedures and 
sequences have not been considered. Stroud and Saeger [11] 
consider the problem where a stream of containers arriving at a 
port and sequential inspections (diagnosis) are conducted to 
decide whether to pass the container or subject it to further 
inspection. The container can leave the sequence of inspection 
stations when some conditions are met or it continues through 
other stations until completion of the entire inspection system. 
Containers that leave the inspection system during inspection 
can either be accepted or subjected to “manual” inspection.  
This problem is considered as binary decision tree problem. 
Madigan et al. [12] extend the work of Stroud and Saeger by 
incorporating the threshold levels of the inspection “sensors” 
and develop a novel binary decision tree search algorithm that 
operates on a space of potentially acceptable binary decision 
tree. They describe computationally more efficient approaches 
for this binary decision tree problem and obtain optimum 
sensor threshold levels that minimize the total cost of the 

inspection system. 
There are similarities and dissimilarities between the 

problem of container inspection at POE and the baggage 
screening in airports. The similarities are related to potential 
error in inspection. This problem is investigated by Canadalino 
et al. [13] where they introduce a comprehensive cost function 
that includes direct costs associated with the purchase and 
operation of baggage screening security devices and the 
indirect costs associated with device errors. They present a 
methodology to determine the best selection of baggage 
screening security devices that minimizes the expected annual 
total cost of a baggage screening strategy [13]. The 
dissimilarities arise from the fact that container inspection 
requires several inspection stations for detecting the presence 
of different nuclear materials, drugs, explosives and others 
while baggage screening is performed at one station. 

This raises several issues of concern stemming from the 
inspection sequence (or flow of container in the system) and 
the acceptance threshold levels of sensors at inspection 
stations. Moreover, the container can leave the inspection 
system when a partial list of attributes deem it safe to accept or 
unsafe to manually unpack and inspect. Inspection error is a 
function of the threshold values set at inspection stations. 
Threshold levels have a major impact on inspection errors, 
inspection time, and throughput of the system. The problem 
becomes a multi-objective problem with two objectives: 
minimization of the total inspection cost which includes cost of 
inspection and cost of misclassifying containers (acceptable 
when they are not or unacceptable when they are) and the 
minimization of delay time. 

The problem of determining the optimum inspection 
sequence has been investigated by many researchers. Since this 
problem is NP-hard, researchers have focused their 
investigation on known configured inspection systems such as 
series, series-parallel, parallel-series and k-out-of-n systems in 
order to obtain optimum solutions for a small number of 
attributes. Lee [14], Raouf et al. [15], and Dufuaa and Raouf 
[16] consider a similar problem for inspection of units in a 
typical production system where a product is tested on a 
number of its characteristics, failure of which results in the 
rejection of the product. There are associated costs for each of 
the tests and the probability that each test will fail the item is 
known. In some models, tests are not perfect, and there are 
associated costs of shipping a faulty product to the customer. 
The problem is to sequence the tests to minimize the total 
expected cost. 

Branch and bound and dynamic programming formulations 
have been proposed to solve the general problem of sequential 
diagnosis, both of which run in exponential time in general. A 
dynamic programming approach has been proposed in [17] for 
threshold functions. Bioch and Ibaraki [18] and Chang et al. 
[19] propose polynomial time algorithms that produce optimal 
solutions for k-out-of-n system. These algorithms are 
generalized further in Boros and Unluyurt [20] by providing a 
generalized algorithm that is optimal for double regular 
systems (having identical components). Other approaches such 
as genetic algorithms and artificial intelligence have been 



 3

utilized. 
Elsayed et al. [21] present a unique approach to the 

formulation of the port-of-entry inspection problem as an 
analytical model. Unlike previous work which determines 
threshold levels and sequence separately, they consider an 
integrated system and determine them simultaneously. They 
decompose the POE problem into two sub-problems. One 
problem deals with the determination of the optimum sequence 
of inspection or the structure of the inspection decision tree in 
order to achieve the minimum expected inspection cost. This 
problem is formulated and investigated using approaches 
parallel to those used in the optimal sequential inspection 
procedure for reliability systems as described in [17], 
[22]-[28]. The other problem deals with the determination of 
the optimum thresholds of the inspection stations so as to 
minimize the cost associated with false reject and false accept. 
As indicated earlier, the delay in inspection system is also a 
major concern as it has significant economic consequences. 

In this paper we develop a new formulation for the POE 
problem by considering both the minimization of the total cost 
and the delay time of the containers simultaneously as a 
multi-objective optimization problem. We seek the optimum 
inspection sequence and the optimum threshold levels of 
sensors at inspection stations in order to minimize the total cost 
and total delay time. 

This paper is organized as follows. Section II describes the 
port-of-entry container inspection problem. Section III 
describes the multiple objectives of the optimization problem: 
the cost of misclassifications, the cost of inspection, and the 
time spent in inspection. Section IV details three approaches 
for solving the multi-objective problem. Section V presents 
numerical examples of the methods discussed and finally the 
last section offers a discussion of the work presented. 

 

II. PROBLEM DESCRIPTION 

A. Port-of-Entry Container Inspection System 
In modeling the port-of-entry container inspection system it 

is assumed that containers arriving for inspection are 
inherently acceptable or contain unacceptable materials, and 
that they have several attributes which may reflect the status 
(presence or no presence) of such material. The inspection 
system is viewed as a collection of stations, over which the 
inspection of a given container is performed sequentially. Each 
station inspects one specific attribute and returns a pass-or-fail 
decision (0 or 1 respectively). At each individual station the 
decision is dependent on a preset threshold level. Varying this 
threshold level affects the probability of misclassifying an 
acceptable container as suspicious or vice versa. The sequence 
in which stations are to be visited, along with threshold levels 
to be applied, establishes the inspection policy which is applied 
to every container arriving for inspection. The final decision to 
accept a container or reject it, thereby subjecting the container 
to further manual inspection, often including a manual 
“unpacking” method, is determined based on the evaluation of 
a predefined Boolean decision function of the individual 

station decisions. 
The Boolean decision function F assigns to each binary 

string of attributes ( )1 2, , ..., na a a  a category. In other words 

1 2( , , , ) 0nF a a a =…  indicates negative class and that there is 
no suspicion with the container and 1 2( , , , ) 1nF a a a =…  
indicates positive class and that additional inspection is 
required, usually manual inspection. 

By definition, for instance, a series Boolean function is a 
decision function F  that assigns the container a value of “1” if 
any of the attributes is present, i.e. 1ia =  for any 

{1, 2, , }i n∈ … , and a parallel Boolean function is a decision 
function F  that assigns the container a value of “1” if all of the 
attributes are present, i.e. 1ia =  for all {1, 2, , }i n∈ … . The 
Boolean function to be used depends on the nature of the 
inspection system; the container attributes being inspected, and 
other factors. The work presented here is designed so that it can 
be applied with any Boolean function. A few common Boolean 
functions are used in the numerical examples. 

B. Modeling of Sensor Measurements 
Let x  represent true status of a container, and code 1x =  if 

it should be rejected and 0x =  if it should be accepted. We 
assume this container is a sample from a population of interest 
under which the probability of  1x =  is ( 1)P x π= =  and the 
probability of 0x =  is ( 0) 1P x π= = − . 

Let r  be the measurement taken by a sensor. This 
measurement r  can in general be a numerical (continuous or 
discrete) reading or a graphical image, as described in the 
Introduction section. To simplify the presentation of our 
development and following [11] and [21], we assume        

( )2
0 0~ ,r N μ σ  when 0x =  and 

                  ( )2
1 1~ ,r N μ σ  when 1x = ,         (1) 

where 0 1μ μ≠ . We choose to use the normal distribution 
because normally distributed data are the most commonly seen 
data in practice and it is has been used in port-of-entry 
inspection applications [11], [21]. Also, continuous 
measurements can often be transformed into a normal 
distributed data by the well known inverse transformation 
method [29]. Likewise, discrete data sometimes can be well 
approximated by a normal distribution either by central limit 
theorem or by some special techniques such as variance 
stabilization transformation. Our development, in principle, 
can be extended to some non-normal cases. 
   We assume two normal distributions in (1) because we 
expect to have different sensor readings for a container with 
true status 1x = and 0x = . We also assume that the 
parameters of the two normal distributions in (1) are known or 
can be estimated from past inspection history. Note that the 
task of distinguishing acceptable and unacceptable containers 
is location and scale invariant to the readings. Without loss of 
generality, we can assume that 0 0μ =  and 1 1μ = . See also 
[21] for further discussions on this assumption. 



 4

C. Threshold Approach 
To make a decision based on the sensor measurement ,r  the 

r   value is compared against a given threshold valueT . We 
reject the container ( 1d = ) if the reading r  is higher than T  
and accept it ( 0d = ) if the reading is lower than T . The 
decision d  at this level of decision making does not always 
agree with the true status x . There are two types of potential 
errors:  

Type I Error: decision 1d =  when the true status of the 
container is 0x = ,  

and 
Type II Error: decision 0d =  when the true status of the   

container is 1x = . 
The probability of these two types of errors can be computed 
by  

( ) ( )
0

1 | 0 | 0 1 TP d x P r T x
σ

⎛ ⎞
= = = > = = − Φ ⎜ ⎟

⎝ ⎠
  

and  

( ) ( )
1

10 | 1 | 1 TP d x P r T x
σ

⎛ ⎞−
= = = ≤ = = Φ ⎜ ⎟

⎝ ⎠
. 

 

D. System Inspection Policy 
The minimization of costs associated with performing 

inspection and misclassification of containers has been 
formulated in Elsayed et al. [21]. Here we expand the 
optimization objective to include the time required for 
inspection, which takes into account the effect of delays on the 
overall system. The time incurred in inspection is added to the 
objectives because it may be very important in some situations. 
The performance of the inspection system is determined by 
both the sequence in which inspection stations are visited and 
the threshold levels applied at those stations, which we denote 
collectively as the inspection policy. 

Since the optimal parameter values for the cost minimization 
problem may not minimize time, some compromise may be 
required. A particular balance of the importance of cost and 
time may be represented by weights. We consider the case 
where the relative importance of cost and time is unspecified 
and therefore we use different importance weights to generate 
possible solutions that produce a Pareto frontier as described in 
section IV. 
 

III. PERFORMANCE MEASURES OF INSPECTION POLICY 

A. Cost of Misclassification and Inspection 
The cost involved in this inspection problem is the sum of 

any cost incurred as a result of misclassifying a container’s 
status and the actual cost of performing the inspection. As 
Elsayed et al. [21] note, there are two types of misclassification 
errors at the systems level: falsely rejecting a container that 
should be cleared and falsely accepting a container that should 
be rejected. These errors are associated with the probability of 

false reject (PFR) and the probability of false accept (PFA), 
respectively. The complementary probabilities of these two 
errors are true reject (PTR) and true accept (PTA). If D  
denotes the decision of the entire inspection system of sensors, 
where 1D =  means to reject and 0D =  to accept, the four 
probabilities can be written as follows: 

( ) ( )
( ) ( )

1| 0 ,   0 | 0 1 ,

0 | 1 ,  and 1| 1 1 .

PFR P D x PTA P D x PFR

PFA P D x PTR P D x PFA

= = = = = = = −

= = = = = = = −
 

The inspection decision D  depends on the individual 
inspection results and the system Boolean function. The 
probability equations just mentioned can be rewritten in terms 
of the threshold value Ti and σ values related to the inspection 
station for any given Boolean function. Several examples are 
given in Elsayed et al. [21]. 

The cost of misclassification arises when a cost is associated 
with PFR and PFA. Let FAc  be the cost of the system accepting 
a “bad” container and FRc  be the cost of the system rejecting a 
“good” container. Then the total cost of system 
misclassification error is ( )  1  F FA FRC PFA c PFR cπ π= + −     
as described in [21]. 

The expectation of the cost of inspection is a function of the 
unit cost to operate each sensor (station) and the probabilities 
of passing each station. Given a particular set of threshold 
values, an optimal sequence in which to visit the sequence can 
be found following the conditions in Elsayed et al. [21]. This is 
explained in the two Theorems in Section IV. The total cost 
arising from misclassification errors and inspection is denoted 
by [ ]total F inspectionc C E C= + . 
 

B. Time for Inspection 
The time required for a container to pass through an 

inspection station is an important measure of the inspection 
system performance. It is possible that this time would be 
related to some characteristic of the inspection station, that is to 
say the inspection may be sped up or slowed down depending 
on some operational setting of the sensor. For example the 
inspection time may be related to a variable that represents the 
resolution or other settings of the sensor. Following Jupp et al. 
[30], we assume the time spent at each station could be related 
to the threshold level Ti at that station. This relationship is 
expressed as exp( )i it a b T= ⋅  for illustration purposes. Here 
the time of inspection decreases as the applied threshold level 
increases.  

To find the total expectation of time spent in the system for a 
given container we first denote ip , the probability of passing 
station i, by: 

( ) ( ) ( )

( )

1

0

0 1

0 0 |

1
1  ,

i i i
j

i i

i i

p P d P d x j P x j

T T
π π

σ σ

=

= = = = = =⎡ ⎤⎣ ⎦

⎛ ⎞ ⎛ ⎞−
= − Φ + Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑
 

and  1i iq p= −  where ip  and iq are functions of threshold 
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values iT . Then, the total expected inspection time totalt  can be 

expressed as 
1

1
2 1

in

total j i
i j

t t p t
−

= =

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∑ ∏ , where it  is the 

inspection time at station i, for a system with n stations using a 
series Boolean decision function. For a parallel Boolean 
decision function, the total expected inspection time is 

1

1
2 1

in

total j i
i j

t t q t
−

= =

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∑ ∏ . 

 

IV. MULTI-OBJECTIVE OPTIMIZATION 
A. Total Expected Cost and Time 

As noted in the problem description, we need to determine 
the optimal design or configuration of sensors in the system 
and the optimum sets of threshold levels that can achieve the 
objectives of maximizing inspection system throughput and 
minimizing the expected total cost. These objectives are 
interrelated. It is unlikely that they would be optimized by the 
same set of parameter values, and there exists some trade-off 
between them. This is a typical multi-objective optimization 
problem. See, for instance, Eschenauer et al. [31], Statnikov 
and Matuso [32], Fonseca and Fleming [33], [34], and Leung 
and Wang [35], among others. We formulate the POE 
problems as a multi-objective optimization problem:

 
 

,
{ , }total totalSequence Threshold

min c t . 

In general, there may be a large number or infinite number of 
optimal solutions in the sense of Pareto-optimality. It is 
desirable to find as many (optimal) solutions as possible in 
order to provide more choices to decision makers.  

The multi-objective problem is almost always solved by 
combining the multiple objectives into one scalar objective 
whose solution is a Pareto optimal point for the original 
problem. A commonly used method to deal with the 
multi-objective optimization problem is to use the weighted 
sum approach, where we optimize fitness functions (i.e., 
weighted sums of the objective functions) for various choices 
of fixed weights 1w  and 2w , 1 2 1w w+ = . 

1 2, 1 2( , ) + w w total totalf S T w c w t=
 

Here, S and T stand for sequence and threshold levels. Thus, 
the multi-objective optimization problem becomes a sequence 
of single objective optimization problems, in which we 
minimize the fitness function for a set of fixed weights 1w  and 

2w . 

1 2, ( , )w wS,T
min f S T                       (2) 

In this paper, we employ a modified weighted sum 
approach, in which we utilize some theoretical results to deal 
with the arrangement of system sequences. Note that the 
function 

1 2, ( , )w wf S T  is highly discrete with regards to the 

system sequence and arrangements. The number of 
arrangements also grows exponentially as the number of 
inspection stations increase. It is computationally expensive to 
directly solve the minimization problem in (2). For the system 
Boolean functions considered in this paper, the optimal 
sequence can be obtained for a given set of weights and 
thresholds, as stated in the theorem presented below  So, for a 
given set of weights and threshold we are able to compute the 
function 

   1 2 1 2, ,( ) ( , )w w w wS
f T min f S T= .             (3) 

In the modified weighted sum approach, we in fact solve the 
minimization problem 

1 2, ( )w wT
min f T . 

This modified approach can provide an efficient method to deal 
with the multi-objective optimization problem under the 
current context. Note that avoiding the consideration of all 
possible sensor arrangements improves the efficiency of the 
modified algorithm.  
 
Theorem 1:  

(a) For a series Boolean decision function, inspecting 
attributes 1, 2, ,i n= …  in sequential order is optimum, in the 
sense of minimizing the fitness function for the given set of 
weights ( 1w , 2w ) and a given set of threshold, if and only if  

1 1 2 1 1 1 2 2 2 2 1 2( ) / ( ) / ( ) /n n nw c w t q w c w t q w c w t q+ ≤ + ≤ ≤ +…  
(condition 1a).                                                                              
In this case, the minimal value of the fitness function is given by 

1 2

1

, 1 1 2 1 1 2 1
2 1

( ) ( ) ( )
in

w w j i i F
i j

f T w c w t p w c w t w C
−

= =

⎡ ⎤
= + + + +⎢ ⎥

⎣ ⎦
∑ ∏ . 

(b) For a parallel Boolean decision function, inspecting 
attributes 1, 2, ,i n= …  in sequential order is optimum, in the 
sense of minimizing the fitness function for the given set of 
weights ( 1w , 2w ) and a given set of threshold, if and only if 

1 1 2 1 1 1 2 2 2 2 1 2( ) / ( ) / ( ) /n n nw c w t p w c w t p w c w t p+ ≤ + ≤ ≤ +…  
(condition 1b).                                                                         
In this case, the minimal value of the fitness function is given by 

1 2

1

, 1 1 2 1 1 2 1
2 1

( ) ( ) ( )
in

w w j i i F
i j

f T w c w t q w c w t w C
−

= =

⎡ ⎤
= + + + +⎢ ⎥

⎣ ⎦
∑ ∏ . 

 The results in Theorem 1 for series system and parallel 
system can be extended to systems with arrangements of 
parallel-series and series-parallel sensors, given in Theorem 2.  
 
Theorem 2:   

(a) Consider a parallel-series decision function with n paths 
of m sensors each (see Fig. 1). If an inspection system with 
attributes 1, 2, ,i n= …  and 1, 2, ,j m= …  arranged in 
parallel-series is optimal, it satisfies the following conditions: 
the inspection sequence of the series of sensors within each 
path should be arranged in the order of  

1 1 2 1 1 1 2 2 2 2 1 2( ) / ( ) / ( ) /i i i i i i im im imw c w t q w c w t q w c w t q+ ≤ + ≤ ≤ +…  , 
and the inspection sequence of parallel paths should be 
arranged in the order of 1 1 2 2/ / /n nF P F P F P≤ ≤ ≤…  
(condition 2a). Here, iF and iP  are the (minimal) combined 



 6

expanse (fitness) of cost and time and the probability of 
acceptance of the ith path:  

( )

1

1 1 2 1 1 2
2 1

1 1 2 1

1

1 2
2 1 0 1

( ) ( )

( )

1
( ) 1   

jm

i i i ik ij ij
j k

i i

jm
ik ik

ij ij
j k ik ik

F w c w t p w c w t

w c w t

T T
w c w t π π

σ σ

−

= =

−

= =

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
= + +

⎡ ⎤⎛ ⎞ ⎛ ⎞−
+ − Φ + Φ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∏

∑ ∏

 

and ( )
1

0
m

i i ij
j

P P D p
=

= = = ∏ . In this case, the minimal value of 

the fitness function is:  

( )
1 2

1

, 1 1
2 1

1

1 1
2 1 1

( ) 1

1 .  

in

w w j i F
i j

i mn

i jk F
i j k

f T F P F w C

F F p w C

−

= =

−

= = =

⎡ ⎤
= + − +⎢ ⎥

⎣ ⎦
⎛ ⎞

= + − +⎜ ⎟
⎝ ⎠

∑ ∏

∑ ∏ ∏
 

 (b) Consider a series-parallel decision function that has n 
subsystems in series with m units in parallel in each subsystem 
(see Fig. 2). If an inspection system with attributes 

1, 2, ,i n= …  and 1, 2, ,j m= …  arranged in series-parallel 
is optimal, it satisfies the following conditions:  the inspection 
sequence of the series of each subsystem should be arranged in 
the order of  

1 1 2 1 1 1 2 2 2 2 1 2( ) / ( ) / ( ) /i i i i i i im im imw c w t p w c w t p w c w t p+ ≤ + ≤ ≤ +…
and the inspection sequence of parallel paths should be 
arranged in the order of 1 1 2 2/ / /n nF Q F Q F Q≤ ≤ ≤…  
(condition 2b). Here, iC  and iQ  are the (minimal) combined 
expanse (fitness) of cost and time and the probability of 
rejection of the ith subsystem:  
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From the theorems, we describe our modified weighted sum 
optimization algorithm as follows:  

Step 1: Generate a large number, say N, sets of weight 
pairs ( 1w , 2w ); 

Step 2: For each pair of weights, we solve the 
minimization problem 1 2

1 2

( , )
min ,arg min ( )w w

w w
T

T f T=   where the 

function 
1 2, ( )w wf T  is computed in a subroutine stated next 

utilizing the results of the theorems; 
Step 3: Obtain the optimal sequence corresponding to  

1 2( , )
min

w wT  (using the results of the theorems) and compute the 
corresponding optimal throughput time and total cost 

1 2 1 2( , ) ( , )( , )w w w w
total totalt c ; 
Step 4: Plot the N pairs of optimal throughput time and 

cost 1 2 1 2( , ) ( , )( , )w w w w
total totalt c  which form the Pareto optimal 

solutions for the multi-objective optimization problem.  
For the parallel and series inspection Boolean systems, we 

use the following subroutine to calculate the 
function

1 2 1 2, ,( ) ( , )w w w wS
f T min f S T= : 

1) For each inspection sensor i, calculate w1ci + w2ti; 
2) For each inspection sensor i, calculate the ordering 

criterion  (w1ci + w2ti)/pi   or (w1ci + w2ti)/qi ; 
3) Sort the ordering criteria, thus finding the optimal 

arrangement of sensors, according to the theorems; 
4)  Calculate the total cost totalc  and the expected time of 

inspection totalt  and return  1 2total totalf w c w t= + . 
 
A similar subroutine can be developed for the series-parallel 

and parallel and series inspection Boolean systems.  
In Step 2 of the modified weighted-sum algorithm, the 

minimization involves the function
1 2, ( )w wf T . We use two 

different ways to minimize this function and they lead to two 
different approaches described in the next section.  

 
B. Implementation: Three Approaches 

Three methods are distinguished in the implementation: Grid 
Search (GS), fmincon (FM) and Genetic Algorithm (GA).  

The grid search method is a complete enumeration method 
and does not use any of the developments (Theorem or 
Algorithm) in this paper. But it sets a standard against which 
the GA and FM approaches may be compared.  

FM and GA are based on the optimization algorithm 
developed in the previous subsection. The difference between 
these methods is how they solve the optimization problem 

1 2, ( )w wT
min f T .  

 
1. Grid Search (GS) 

The grid search method is a complete enumeration of 
possible threshold values and all inspection sequences. A 
discrete set of threshold values is formed from the range of 0-1 
using a gradient of 0.05. The total cost and total time are 
calculated for each possible combination of threshold values 
and sequence. The resulting cost and time values are plotted 
and the outermost points along the curve are filtered to 
represent the solution set that forms the Pareto frontier. Thus 
the GS method yields a small number of true optimal points 
compared to the other methods. 
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2. Minimization Using MATLAB fmincon (FM) 

The MATLAB (The MathWorks, Inc.) fmincon function 
attempts to find a constrained minimum of scalar function of 
several variables starting at an initial estimate. This is generally 
referred to as constrained nonlinear optimization or nonlinear 
programming. For each pair of weights, we use fmincon to 
minimize 

1 2, ( )w wf T  and try different sets of initial thresholds. 

Note that the function 
1 2 1 2, ,( ) ( , )w w w wS

f T min f S T= is highly 

discrete in T  which is inherited from the sequence 
optimization. Therefore, direct use of the fmincon function 
does not always work. As the third subplot of Figure 1 shows, 
the optimal solutions vary significantly with different initial 
values used in the fmincon function.  

  
3. Genetic Algorithm (GA) 

 A genetic algorithm is an iterative random search algorithm, 
which takes advantage of information in the previous steps 
(ancestors) to produce new searching points (off-springs). It is 
called “genetic” algorithm because the principle and design of 
this search algorithm mimics those of genetic evolution found 
in nature [36]. A genetic algorithm can be applied to solve “a 
variety of optimization problems that are not well suited for 
standard optimization algorithms, including problems in which 
the objective function is discontinuous, nondifferentiable, 
stochastic, or highly nonlinear” [37]. In the optimization 
algorithm developed here, the MATLAB function ga was used 
to minimize 

1 2, ( )w wf T , replacing the MATLAB function 

fmincon, for each pair of weights. One advantage of using the 
ga is that it is insensitive to the initial values and we are able to 
obtain optimal solutions in all of our analyses.  

V. NUMERICAL EXAMPLES 
Here the results of the multi-objective optimization are 

presented in graphical form. The three graphs in Figure 1 
illustrate the optimal points obtained from the three methods 
discussed in the previous section applied to an inspection 
system using a parallel Boolean decision function. The system 
parameters in this example are as follows: n=3, c=[1 1 1], 
π=0.0002, µ0=[0 0 0], µ1=[1 1 1],  σ0=[0.16 0.2 0.22], σ1=[0.3 
0.2 0.26], cFA=100000, cFR=500, a=[20 20 20], b=[-3 -3 -3], 
w1=[0: 0.004:1], w2=1- w1. 

The grid search method produces optimal points that fall 
into distinct vertical segments due to the discrete nature of the 
method, and the minimum search gradient with an acceptable 
computation time was used. The leftmost graph contains only 
the outermost points with respect to the Pareto frontier from 
this method. Note that a small number of the points shown 
actually fall on the theoretical Pareto frontier, therefore the 
output from this method is not as useful compared to the others. 

The center graph illustrates the optimal points obtained from 
the GA method. For the FM method it was discovered that the 
initial values used had a significant effect on the optimality of 
the points obtained. Therefore various sets of initial values 

were tested and the results overlaid on one graph to illustrate 
the phenomenon. The initial value sets are represented as two 
series in the rightmost graph. The initial values for threshold 
initial value (TIV) set 1 are T0=[0.2 0.2 0.2] and the initial 
values for TIV-set2 are T0=[0.2 0.6 0.2]. Another set, T0=[0.8 
0.8 0.8] gave similar results to TIV-set1, and is not shown.  

All three methods produce at least some portion of the same 
Pareto frontier of solutions with minimal time and cost. Each 
point represents the time and cost for one possible solution, and 
each solution is defined by a set of threshold values 
{ }: 1,...iT i n=  -each to be applied at one of the n inspection 
stations- and the sequence in which to visit those stations. 
Table 1 presents three examples of points chosen from the 
Pareto frontier of grid search. 
 

Table 1.  Examples of Pareto Optimal Solutions 
T1 T2 T3 Sequence Cost Time 
0.0 0.95 0.05 2-3-1 9.03 1.16 
0.0 0.85 0.0 2-1-3 5.54 1.57 
0.0 0.75 0.05 2-3-1 3.13 2.11 

 
It is important to consider program running time in the 

comparison of methods. FM is the fastest of the three methods, 
requiring about 2 minutes for one initial set. However, it does 
not always return the correct Pareto frontier and thus different 
initial sets must be used, and without knowledge of the true 
Pareto frontier choosing a good initial set is difficult. The GS 
method with grid=0.05 runs in about 6 minutes, however only 
about 12 points of the output are considered to fall within the 
theoretical Pareto frontier.  If the grid is decreased to 0.025, 
roughly 23 points on the theoretical Pareto frontier are 
produced but it takes 5 hours to run. Further reducing the grid 
to 0.01 requires more than 200 hours to finish. Therefore it 
becomes impractical to decrease the grid size in order to 
generate more optimal points on the theoretical frontier. 

The GA method takes about 10.5 hours with the current 
choice of parameters (PopulationSize=80) and produces 251 
points on the theoretical Pareto frontier. Note that the ga 
function of MATLAB is designed for general purpose use, and 
we anticipate that the running time can be significantly 
improved by using a specialized program. Moreover, the GA 
method produces optimal solutions in all trials that best 
represent the theoretical Pareto frontier, with all points falling 
on the frontier. 

The GA method was applied to a system using a series 
Boolean decision function with the same parameters as the first 
example. The results are presented in Figure 2. Here it is 
evident that a change in Boolean function has an effect on the 
results. 

In the third example the GA method was used to find the 
multi-objective optimal solution to an inspection problem that 
uses a series-parallel Boolean function with the system 
parameters: m=2, n=2, c=[1 1; 1 1], π=0.0002, µ0=[0 0; 0 0], 
µ1=[1 1; 1 1],  σ0=[0.16 0.2; 0.22 0.18], σ1=[0.3 0.2; 0.26 0.18], 
cFA=100000, cFR=500, a=[20 20; 20 20], b=[-3 -3; -3 -3], 
w1=[0: 0.004:1], w2=1- w1. Figure 3 gives the optimal points 
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for this example. 
 

 

VI. DISCUSSION 
This paper investigates and formulates the inspection 

systems at ports-of-entry. The formulation is general and 
applicable to different systems as the attributes of a typical 
container are expressed by a Boolean function. The inspection 
stations in the physical configuration of the system can be 
arranged in series (sequential inspection), parallel, 
series-parallel, parallel-series, k-out-of-n (where any k stations 
out of n indicate the presence of undesired attributes) or in any 
network configuration. Boolean functions corresponding to 
any of these configurations can be developed. The number of 
attributes and the inspection sequence have significant impact 
on the system performance. Likewise, the threshold levels of 
the sensors are critical in the decision process of accepting or 
classifying a container as suspicious.   They influence the 
probability of making the “wrong” decision by accepting 
undesired containers or subjecting “good” containers to further 
unneeded inspections. The POE inspection system problem is 
formulated as a multi-objective optimization problem that 
attempts to minimize the total cost as well as the delay time of 
the containers. The paper presents three different approaches 
for determining the optimum inspection sequence and the 
threshold levels at each inspection station that result in the 
optimization of the system performance measures in terms of 
cost and time. They are: grid search, constrained nonlinear 
optimization function, and genetic algorithm. All result in the 
same values of the optimization function when the number of 
inspection stations and threshold levels are small. The first two 
approaches become impractical when more stations and 
threshold levels are introduced while the genetic algorithm 
provides optimum or near optimum solutions for such 
problems in much smaller computation times.  As stated 
earlier, these approaches provide Pareto frontier optimal 
solutions where every solution includes the optimum sequence 
of the inspection stations and the corresponding optimum 
threshold levels. This will enable the decision maker to choose 
amongst solutions that meet other constraints such as budget, 
space or layout of the port. 
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Figure 1. Comparison of Three Solution Methods to Multi-Objective Problem
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Figure 2.  GA Method for Series Boolean 
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Figure 3.  GA Method for Series-Parallel Boolean 


