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Abstract
This paper considers the problem of container inspection at the port-of-entry.  Containers are inspected at inspection stations using a predetermined sequence.  The threshold levels of sensors might result in accepting undesired containers or subjecting “good” containers to unnecessary additional inspections.  In this paper we investigate an approach for determining the optimum threshold levels of the sensors at inspection stations in order to minimize the overall cost of inspection. Numerical examples are presented to demonstrate the use of the proposed approach. 
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1. Introduction

Seaports are critical gateways for the movement of international commerce. More than 95 percent of our non–North American foreign trade arrives by ship. With “just-in-time” deliveries of goods, the expeditious flow of commerce through these ports is so essential. Containers are inspected in order to detect the smuggling of nuclear materials, hazardous and illegal shipments. Slowing the flow long enough to inspect either all or a statistically significant random selection of imports would be economically intolerable (Loy and Ross 2002). There are only two techniques of non-invasively “seeing” into a container, both involving projection and the resultant transmission or reflection of waves: 1) Electromagnetic (EM) waves (radio waves, light, x-rays, gamma rays, etc.) and 2) Material vibration waves (ultrasound). A variety of means exist for converting these waves into images suitable for human inspectors to interpret (James et al. 2002).  The interpretation may lead to accepting a container that contains undesirable material (Type II error) or may lead to further inspection of a container that is acceptable (Type I error) which results in delays and added cost.  Clearly, the threshold levels of these techniques have a direct effect on these types of errors and the inspection section.  
In this paper, we decompose the port-of-entry inspection problem into two sub-problems. The first problem deals with the determination of the optimum sequence of inspection or the structure of the inspection decision tree in order to achieve the minimum expected inspection cost. The second problem deals with the determination of the optimum thresholds of the sensors at inspection stations so as to minimize the cost associated with false positive (false alarm, which results in additional manual inspection) and false negative (failure to identify illicit materials or weapons). The first problem can be formulated and investigated using approaches parallel to those used in the optimal sequential inspection procedure for reliability systems as described by Butterworth (1972), Halpern (1974, 1977) , Ben-Dov (1981), Cox et al. (1989), Cox et al. (1996), and Azaiez et al. (2004). After the sequences of inspection and the structure of the inspection decision tree are determined, we determine the optimum thresholds of the sensors at inspection stations. We intend to address the first problem in section 2 and the second problem in section 3.
2. Optimum Sequence Problem for Port-of-Entry Inspection

2.1. Optimum Sequence Determination

In the port-of-entry inspection application, these are containers (entities) being off loaded from ships. Containers are inspected and classified according to observations we make regarding their attributes. There are several categories into which we seek to classify entities. In the simplest case, these are positive and negative, 1 or 0, with “0” designating entities that are considered “acceptable” and “1” designating entities that raise suspicion and require special treatment. After each observation, we either classify the entity or subject it to another inspection process.  The classification will be thought of as a decision function F that assigns to each binary string of attributes a category. In this paper, we first focus on the case where there are two categories. Thus, F is a Boolean function. For instance, consider the Boolean function defined by F(111) = 1 and F(abc) = 0 otherwise. This is the function that classifies an entity as positive if and only if it has all of the attributes. Boolean functions provide the selection logic for an inspection scheme. If F is known, we seek to determine its value by testing the attributes one by one. In a typical case, the attributes are assumed to be independent. We shall return to the question of whether the distribution of the attribute states is known.  In particular, in the binary case where the probability that the ith attribute takes on the value 0, which is defined as 
[image: image1.wmf]i

p

, and the probability that it takes on the value 1, which is defined as 
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. The inspection policy determines the order of testing the container’s attributes. At any point, the inspection scheme might tell us to stop inspecting and output the value of F based on the outcome of inspections so far. We must make enough observations to allow us to classify the entity and decide whether to designate it as an entity that needs further inspection or accept it. The problem is to find an optimum inspection sequence that minimizes the total expected inspection cost. 
This inspection problem is analogous to the inspection problem of a reliability system. Consider a reliability system, the components (analogous to attributes of a container) of which are to be tested sequentially in order to identify the state of the system (operating or failed, analogous to the classification of a container, “acceptable” or “suspicious”). A cost is incurred for testing each component of the system. The initial failure probability of each component (before testing) is known, which is analogous to the initial probability that the ith attribute takes on the value 1, which is defined as 
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, as well as the system configuration, which is analogous to the Boolean function 
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. The inspection problem of a reliability system is to determine the optimum inspection procedure for identifying the system state at minimal expected inspection cost. So the optimum inspection sequence problem for port-of-entry can be formulated and investigated using an approach similar to that used in the optimal sequential inspection procedure for reliability systems.
The assumptions of port-of-entry inspection system are:
1. There are 
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 inspection stations in the system; each station is used to identify one attribute of the container being inspected. Let 
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 be the state of the 
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th attribute.
2. The classification of each container is thought of as a decision function 
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 that assigns to each string of attributes a class. In this section, we focus on the case where there are only two classes, 0 and 1, i.e. 
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 means negative class and that there is no suspicion with the container and 
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 means positive class and that additional manual inspection of the container is required. 

3. Let 
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 be the unit cost associated with the inspection at inspection station 
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4. From inspection history, we might have information about the probability that the attribute 
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 is present or absent for a group of containers, which are imported by the same company or from the same origin at the same time. Let 
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5. The inspection stations are perfect, which means that the true attributes can always be identified at the corresponding inspection stations without any error.

We now state the results for optimum inspection of containers with series and parallel Boolean function. By definition, a series Boolean function is a decision function 
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 that assigns the container class “1” if any of the attributes is present, i.e. 
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, and a parallel Boolean function is a decision function 
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 that assigns the container the class “1” if all of the attributes are present, i.e. 
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Now, consider a group of containers with a series Boolean function and 
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 independent attributes. Let the inspection procedure be such that attribute 
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 is inspected only if attribute 
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 is found absent, for all attributes 
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. The following result holds:
Theorem 1: For a series Boolean decision function, inspecting attributes 
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 in sequential order is optimum, minimizes expected inspection cost, if and only if:
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In this case, the expected inspection cost is given by 
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Now, consider a parallel Boolean decision function, and assume that the inspection procedure is such that attribute 
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 is inspected only if attribute 
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 is found present, for all attributes 
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. Then, using the same notation as above, the following result also holds:

Theorem 2: For a parallel Boolean decision function, inspecting attributes 
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 in sequential order is optimum (in the sense that it minimizes expected inspection cost) if and only if:
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In this case, the expected inspection cost is given by 
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The proofs and examples for series/parallel systems are given in Ben-Dov (1981).

We now generalize the results given above to containers with more general combined series/parallel Boolean decision functions. Here, we focus on systems of independent attributes that can be represented without replications, that is Boolean decision functions that can be represented using only AND/OR logic in such a way that each attribute appears only once. 
We first introduce the following definitions:
1. A subsystem 
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 is called a series (parallel) subsystem with constituents 
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 can be obtained by placing 
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 in series (parallel).
2. A series (parallel) subsystem 
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 is called a maximal series (parallel) subsystem if no other subsystems of the entire system can be obtained by placing additional attributes or subsystems in series (parallel) with 
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3. The constituents 
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 of a series (parallel) subsystem 
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 are called the basic constituents of 
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 if none of them is itself a series (parallel) subsystem. That is, each basic constituent 
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 of a series subsystem must be either a simple attribute or a parallel subsystem, and conversely for the basic constituents of a parallel subsystem. 
For instance, the system represented in Figure 1 is a maximal series subsystem whose basic constituents are subsystem 
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 and attribute 5. In turn, 
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 is a maximal parallel subsystem whose basic constituents are subsystem 
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 and attribute 4, and so on.

Consider a combined series/parallel system that can be represented as discussed above. The following initialization algorithm is used to order the basic constituents of all subsystems of such a Boolean decision function, prior to identifying the optimal inspection policy.

Step 1:

Consider any maximal series subsystem 
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 for which all the basic constituents 
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 be the inspection cost of attribute 
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 be the prior absent and present probabilities of attribute 
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Figure 1. Sample system for a Boolean decision function
1. Reorder and re-label the attributes (if necessary) so that condition (1) above holds. We say that 
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 is now ordered.
2. Since the expected cost of inspection the series subsystem 
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 is given by equation (2), set 
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3. Set 
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 to be the absent and present probabilities of subsystem 
[image: image67.wmf]S

, respectively.
Similarly, for any maximal parallel subsystem 
[image: image68.wmf]S

 for which all the basic constituents 
[image: image69.wmf]1

,,

n

SS

K

 are simple attributes, and using the same notation as above, do the following:
4. Reorder and re-label the attributes (if necessary) so that condition (3) above holds. We say that 
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 is now ordered. Whenever 
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 is to be inspected, it should be inspected sequentially according to the established order, such that attribute 
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 is inspected only if attribute 
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 if found present.
5. Since the expected cost of inspecting the parallel subsystem 
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 is given by equation (4), set 
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6. Set 
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 to be the present and absent probabilities of subsystem 
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If the inspection sequence is now determined, i.e, if all maximal series or parallel subsystems are now ordered according to steps 1-3 or 4-6, then stop, otherwise go to step 2.

Step 2:

Consider each non-ordered maximal series subsystems 
[image: image79.wmf]1

,,

n

SS

K

 in which all basic constituents are either ordered subsystems or simple attributes. If any basic constituents 
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7. Reorder and re-label the basic constituents (if necessary) so that the following condition holds:
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8. Set 
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9. Set 
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Similarly, for each non-ordered maximal parallel subsystems 
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10. Reorder and re-label the basic constituents (if necessary) so that the following condition holds:
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11. Set 
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12. Set 
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Repeat step 2 as until all subsystems have been ordered.
We are now ready to establish the main result of this section.

Theorem 3: Consider a general system 
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 for a Boolean decision function 
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 ordered according to the initialization algorithm. Then, the optimal inspection policy that minimizes the expected inspection cost follows the orderings specified in the initialization algorithm. Moreover, if a basic constituent 
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 is to be inspected, then it should be inspected to completion before moving on to the inspection of basic constituent 
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 of that subsystem (or inspection of some other subsystem), if needed. In this case, the optimal expected testing cost of the system is 
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2.2. Numerical Example

We now apply the above algorithm to the system given in Figure 1. Let the inspection costs be 
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In step 1, we consider the maximal parallel subsystem 
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 formed by attributes 2 and 3. The ratios of cost to absent probability are 15 and 10.45 for components 2 and 3, respectively. Based on step 1 of the initialization algorithm, we renumber the attributes so that constituent 
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 will be attribute 2. To distinguish the subsystem before and after ordering, in this example we will use 
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In step 2, we begin by considering the series subsystem 
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with attribute 1 and ordered subsystem 
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. The ratios of cost to present probability are 33.3 and 166.1 for attribute 1 and ordered subsystem 
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We next consider the parallel subsystem 
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Finally, we consider the entire system
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 and attribute 5, respectively. Therefore, 
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 is already ordered. However, to distinguish between the initial version of system 
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 and the ordered one, we denote the latter by 
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The optimum inspection sequence of a container with a Boolean decision function as represented by system 
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 is determined by Theorem 3 as follows:
· Inspect 
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 first. If the combined attribute of  
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 is present, then conclude that the container is suspicious and needs additional manual inspection and inspection of attribute 5 is skipped. Otherwise, inspect attribute 5. If attribute 5 is present, then we perform additional manual inspection of the container. Otherwise, accept the container.
· To inspect 
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, start by inspecting attribute 4. If it is absent, then conclude that the combined attribute of 
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· To inspect 
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, first inspect attribute 1. If it is present, then conclude that the attribute of
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· To inspect 
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, inspect attribute 3 first. If it is absent, then 
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 are also absent. Otherwise, inspect attribute 2. If it is present, then the combined attributes of 
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Finally, the binary decision tree is determined as shown in Figure 2.
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Figure 2. Binary Decision Tree for the Example

3. Optimum Thresholds Problem for Port-of-Entry Inspection
3.1. Problem Description
The inspection of a container at the port-of-entry is performed sequentially at different inspection stations.  There are 
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 inspection stations in the system; each station is used to identify one attribute of the container being inspected. Let 
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 be the decision of 
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th station after inspection. For simplicity we assume that there are only two states, 1 and 0, for presence or absence of the attribute respectively. The classification of each container is thought of as a decision function 
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 that assigns a class to each string of attributes. In this section, we focus on the case where there are only two classes, 0 and 1, i.e. 
[image: image180.wmf]12

(,,,)0

n

Fxxx

=

K

 means negative class and that the container is not a suspect and 
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 means positive class and that additional manual inspection is required. The decision of classification can be made before all attribute values are available as in Figure 3. 
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Figure 3. Binary Decision Tree

For each inspection station 
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 is taken by the sensor at the station and compared against a given threshold value 
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There are potential errors in making a decision at each station.  There is a conditional probability that given an attribute with 
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 the decision 
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 will be 0.  This is known as a false negative, and denoted by 
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.  The opposite case is making a decision 
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, and the conditional probability of this false positive or false alarm is denoted by 
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A normal distribution for attribute 
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 with true state of 1 or 0 might be assumed or estimated from previous inspections as 
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.  In this case, the conditional probabilities of error for a decision from station 
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 can be written as follows: 
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 and 
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The final decision in the classification of a container is based on all or partial decisions at inspection stations and the Boolean function 
[image: image201.wmf]12

(,,,)

n

Fxxx

K

, i.e. 
[image: image202.wmf]12

(,,,)

n

DFDDD

=

K

, which means that we may not need all the values of 
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’s to make the final decision of classification.  The conditional probability of a false positive in the final classification of a container is 
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From inspection history, we have information about the probability of a container’s true classification being 1 or 0:  
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 be the unit cost associated with a false positive (the cost of additional inspection), and 
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 be the unit cost associated with a false negative.  The expected total cost associated with false positive and false negative is 
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The objective of the problem is to minimize 
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 with the decision variables being the sensor threshold levels 
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.  This is achieved by expressing the false negative and false positive probabilities in terms of the threshold levels.  The calculation of 
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. We assume that the inspections and decisions made based on the sensor measurements at different stations are independent.

3.2. System Probabilities of Error
In this section, conditional probabilities of false positive and false negative for the overall inspection system are estimated for series and parallel Boolean functions.
3.2.1.  Series Boolean Function

A simple series system with 
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 inspection stations, where any attribute with a state 
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The conditional probability of false positive 
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For a system with 3 attributes, 
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The conditional probability of false negative is found by considering possible combinations of attributes.  A value for 
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 is estimated by conditioning on these 
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 arrangements and considering how likely each one is to occur.  For a certain sequence with r attributes of type 1, 
[image: image225.wmf]0

a

 is found by multiplying 
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 for these r attributes and 
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 for all remaining n-r attributes.  Therefore if the attribute sequence is reordered with the first r attributes having type 1, the conditional probability of false negative for that sequence can be written as:  
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where k is an indicator for a possible attribute sequence.  The k indicator associates an 
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, which is an estimate of the likelihood of a specific arrangement of attribute values.  Then the overall conditional probability of false negative in the system is 
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Consider  
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for all possible sequences as shown in Table 1. 
Table 1. 
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Combining the conditional probability of false negative in the system is 
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3.2.2.  Parallel Boolean Function

A simple parallel system with 
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 inspection stations, where all attributes must have the state 
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The conditional probability of false positive 
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is conditioned on possible attribute sequences and their relative likelihood.  For a certain sequence with r attributes of type 0, 
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 is found by multiplying 
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 for these r attributes and 
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 for all remaining n-r attributes.  
Therefore if the attribute sequence is reordered so that the first r attributes have type 0, the conditional probability of false positive for that sequence can be written as: 
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where k is an indicator for a possible attribute sequence.  The k indicator associates an 
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, which is an estimate of the prior percent observed of that specific arrangement of attribute values.  Then the overall conditional probability of false positive in the system is 
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Again consider the case when 
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, assume equal prior probabilities for the seven possible sequences with 
[image: image254.wmf]0

F

=

, then 
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is estimated using the values shown in Table 2. 
Table 2. 
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	# possible sequences
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	One “0” attribute
	3
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Combining the above lines gives the conditional probability of false positive in the system, 
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The conditional probability of false negative in this system is found by: 

[image: image262.wmf](

)

(

)

(

)

(

)

(

)

1212

12

0

11

000000000

...

0|1

(0)|(1)(0|1)

...1......1...

rn

r

iiii

rn

iijiiiiii

ijiii

PDF

PDxPDx

a

aaaaaaaaa

++

<<<

===

======

=-++-++-

ååå

UIUI


For 
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3.3. Numerical Example
This section provides an example of the procedure used to determine the optimum threshold values for a system with three inspection stations whose overall classification is based on a series Boolean function.  The optimum thresholds 
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 are the solutions to the minimization problem with an objective function of the total expected cost associated with the possibility of false positive and false negative in the final decision, 
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Assuming equal probabilities for the seven possible sequences with F=1, the total expected cost of errors is:
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which is a function of the threshold levels and system parameters.  To carry out the optimization a search loop is implemented which tests all combinations of possible threshold level values for each station, calculating overall α0 and α1 values for each combination.  
Given the following system information: 
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 and the distribution parameters for attribute ‘i’ which is measured by station ‘i’ are shown in Table 3. 
The optimum threshold levels determined for each station are 
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.  These threshold values determine the system’s probabilities of false negative and false positive which are
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.  These values return a minimum expected cost associated with false negative and false positive of CF= $38.35 .
Table 3.  Distribution Parameters for Attribute ‘i’
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4. Conclusions
In this paper we investigate an approach for determining the optimum threshold levels of sensors for containers subject to inspection at the port-of-entry. Methods for estimating the probabilities of false negative and false positive we developed for two commonly used inspection systems: series and parallel.  The approach is general and it requires prior knowledge of “misclassifications” as a function of the sensors’ threshold levels.  The optimization approach searches within discrete values of the threshold levels to determine the levels that minimize the overall cost of inspection. 
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