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Abstract—This paper considers the problem of container 

inspection at the port-of-entry.  Containers are inspected through 
a specific sequence to detect the presence of nuclear materials, 
biological and chemical agents, and other illegal shipments.  The 
threshold levels of sensors at the inspection stations affect the 
probabilities of incorrectly accepting or rejecting a container.  In 
this paper we present several optimization approaches on how to 
select sensor threshold levels under considerations of 
misclassification errors, total cost of inspection, and budget 
constraint. Examples of the use of the approaches in different 
sensor arrangements are demonstrated. 
 

Index Terms—Boolean function, probability of false accept, 
probability of false reject, sensor threshold levels, receiver 
operating characteristic curve 
 

I. INTRODUCTION 
HE trade globalization and outsourcing of manufacturing 
goods have caused significant increases in the number of 

cargo containers being transported internationally. For 
example, each year more than 100 million cargo containers 
which constitute about 90 percent of the entire world’s cargo 
crisscross international sea lanes and more than 95 percent of 
the non–North American foreign trade arrives into US ports 
by ship.  Slowing the flow long enough to inspect either all or 
a statistically significant random selection of imports would 
be economically intolerable (Loy and Ross 2002).  The 
emphasis on improving security of such containers prompted 
the development and installation of a wide range of inspection 
machines and sensors. These machines or sensors have 
different capabilities of detecting the smuggling of nuclear 
materials, biological agents, drugs, and hazardous and illegal 
shipments.   

One of the most widely used techniques of non-invasively 
“seeing” into a container (James et al. 2002) is based on the 
use of electromagnetic (EM) waves (radio waves, light, X-
rays, γ -rays, etc.). This technique is utilized in VACIS 
(vehicle and cargo inspection system) device which combines 
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two formerly separate scanning techniques. Gamma rays look 
for suspicious images, while radiation detection tracks 
radioactive signatures.  

The task of definitely identifying the contents of the 
container through this system of inspection stations is very 
difficult regardless of the X- or γ -radiation source being used 
due to the fact that these current scanners are based on the 
digital radiography and the images obtained are just projection 
images. All goods in a container are overlapped on the image, 
and the gray scale is dependent on the total mass thickness 
along the radiation beam (An et al. 2003). Moreover, the 
penetration capability is one of the main factors which 
condition the efficiency of an X-ray inspection facility for 
freight.  

The penetration is dependent on two factors of equal 
importance: (1) The energy of the X-ray beam, which 
determines the attenuation factor of the beam through a given 
cargo and (2) The dynamics of the detectors, which 
corresponds to the ratio between the largest and the smallest 
signals they can detect. Most authors tend to forget the second 
point and the only argument taken into account in the design 
of X-ray systems is the beam energy (Bennett et al. 1992). 
Such reasoning is meant to justify the use of high energy X-
rays of up to 10 MV. Indeed such energies are necessary in 
order to obtain a good penetration when the X-ray detectors 
have a dynamics of the order of 410 , as is the case with 
traditional technologies where a scintillating material is 
coupled to a photodiode (Gaillard 1996).  In many cases, it 
becomes necessary to increase the energy of the beam in order 
to obtain more information about the content of the container. 
This in turn reduces the probability of falsely identifying the 
type of the cargo in the container.  The threshold level has a 
direct impact on the classification of the container and the 
probability of making the “wrong” decision.  Therefore, it is 
important to determine the optimum threshold level that 
minimizes the overall cost of inspection and making the 
“wrong” decision (Liao et al. 2006). 

Identifying the type of the cargo and classifying the 
container accordingly as acceptable (no suspicious material) 
or not and the consequence of such decision in terms of Type 
I error, also known as an "error of the first kind", an α  error, 
or a "false accept" (where a container that has suspicious 
cargo is accepted) and Type II error, also known as an "error 
of the second kind", a β  error, or a "false reject" (where a 
container is rejected or goes through extensive manual 
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examination when in fact it has no suspicious contents).  
Either the Bayesian or the Neyman-Pearson type criterion can 
be used to model systems with these two types of errors. 
Thomopoulos et al. 1989, for instance, considered a Neyman-
Pearson formulation where one assumes a bound on the global 
probability of false alarm, the goal is to determine the 
optimum local and global decision rules that minimize the 
global probability of miss (or equivalently maximize the 
global probability of detection). When the inspection stations 
are deployed so that their observations are conditionally 
independent, one can show that these decision rules are 
threshold rules based on likelihood ratios (Thomopoulos et al. 
1989). The problem now becomes one of determining the 
optimal thresholds of the sensors at each station. While this 
task is quite non-trivial, it can still be done for a reasonably 
small number of inspection stations using iterative techniques 
or using complete enumeration (Zhang et al. 2006,  Stroud 
and Saeger 2003, Elsayed 2003, Elsayed and Zhang 2006) ).  

In this paper, we decompose the port-of-entry inspection 
problem into two sub-problems. One problem deals with the 
determination of the optimum sequence of inspection or the 
structure of the inspection decision tree in order to achieve the 
minimum expected inspection cost. This problem can be 
formulated and investigated using approaches parallel to those 
used in the optimal sequential inspection procedure for 
reliability systems as described in Butterworth (1972), 
Halpern (1974a, 1974b, 1977) , Ben-Dov (1981), Cox et al. 
(1989, 1996), and Azaiez et al. (2004).  The other problem 
deals with the determination of the optimum thresholds of the 
inspection stations so as to minimize the cost associated with 
false reject and false accept. This paper gives an overview of 
the solution to the first (sequence) problem and applies those 
results in obtaining an overall inspection policy solution by 
determining the optimum threshold levels at inspection 
stations for a given optimum sequence of inspection.  

 

II. PROBLEM DESCRIPTION 

A. Port-of-Entry Container Inspection System 
The inspection of a container at the port-of-entry is 

performed sequentially at stations that form the inspection 
system.  Containers are inspected and classified according to 
observations made regarding their attributes.   Suppose there 
are n  inspection stations in the system; one sensor 
(equipment) at each station is used to identify one attribute of 
the container being inspected, for example presence of 
radiation or uncharacteristic X-ray readings.  There are several 
categories into which we seek to classify the containers. In the 
simplest case, these are negative and positive, 0 or 1, with “0” 
designating containers (entities) that are considered 
“acceptable” and “1” designating entities that raise suspicion 
and require special treatment. After each inspection, we either 
classify the entity as acceptable or subject it to another 
inspection process.   

The classification is thought of as a decision function F that 

assigns to each binary string of attributes ( )1 2, ,..., na a a  a 

category, i.e. 1 2( , , , ) 0nF a a a =K  indicates negative class and 
that there is no suspicion with the container and 

1 2( , , , ) 1nF a a a =K  means positive class and that additional 
inspection is required (usually manual inspection). In this 
paper, we focus on the case where there are two categories, 0 
or 1. Thus, F is a Boolean function. 

By definition, for instance, a series Boolean function is a 
decision function F  that assigns the container class “1” if 
any of the attributes is present, i.e. 1ia =  for any 

{1, 2, , }i n∈ K , and a parallel Boolean function is a decision 
function F  that assigns the container the class “1” if all of 
the attributes are present, i.e. 1ia =  for all {1, 2, , }i n∈ K .  

B. Sensor Performance and Inspection Threshold Levels 
Let X  represent a randomly selected container for 

inspection. There are two possibilities: 0X =  (representing 
that this container is acceptable) and 1X =  (representing that 
this container is unacceptable). Suppose that information 
about the probability of a container’s true classification is 
obtained from inspection history. 
Denote ( 1) 1 ( 0)P X P Xπ = = = − = .  An inspection system 
consists of multiple sensors or inspection stations. Let ir be 

the measurement taken by the thi  sensor (inspection station) 
for this item X . Suppose that two normal distributions for 
each attribute i  are assumed or estimated from previous 
inspections such that 2

,| 0 ~ (0, )ii or X N σ=  and 

1,

2| 1 ~ (1, )iir X N σ= . Each measurement ir  is compared 

against a given threshold value iT . Without loss of generality, 

we assume that the thi station rejects this item ( 1id = ) if the 

reading ir  is higher than iT  and accepts it ( 0id = ) if the 

reading is less than iT .  
There are potential errors in making this type of decision. 

Given an entity with 1X = , there is a conditional probability 
0

iα that a decision 0id =  could be made at the thi  inspection; 
this is a type I error (falsely accepting a bad item 1X = ) 

( ) ( )0

1

1
0 | 1 | 1 i

i i i i
i

T
P d X P r T Xα

σ
⎛ ⎞−

= = = = ≤ = = Φ ⎜ ⎟
⎝ ⎠

. There 

is also a type II error (rejecting a good item 0X = ) with the 
conditional probability 1

iα of the decision 1id =  given 0X =  

( ) ( )1

0

1 | 0 | 0 1 i
i i i i

i

T
P d X P r T Xα

σ
⎛ ⎞

= = = = > = = − Φ ⎜ ⎟
⎝ ⎠

.  

C. System Inspection Policy 
In this paper we consider how different parameters of the 

inspection system affect the costs associated with performing 
inspection and misclassification of containers.  It becomes 
clear that the performance of the inspection system is 
determined by both the sequence in which inspection stations 
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are visited and the threshold levels used at those stations, 
which we denote collectively as the inspection policy.  
Therefore the goal of this paper is to formulate the expected 
cost of inspection and classification errors (false positive and 
false negative) and use this information to generate a policy 
for the system’s optimum performance.  The optimization 
method is illustrated for inspection systems with decision 
functions of series, parallel, series-parallel, and parallel-series 
Boolean functions.  
 

III. OPTIMIZATION APPROACHES 

A. Cost of Wrong Decisions 
At the system level, there are also two types of 

misclassification errors: falsely reject a container that should 
be cleared and falsely accept a container that should be 
rejected.  Related to these two types of errors in a system, the 
probability of false reject (PFR) is defined as the probability 
of false rejection in the overall system. The probability of 
false accept (PFA) is defined as the probability of false 
acceptance in the overall system. The complementary 
probabilities of these two errors are true reject (PTR) and true 
accept (PTA).  Denote by D  the decision of the entire 
inspection system of sensors where 1D =  means to reject, and 

0D =  to accept. The four probabilities are listed as follows: 
( ) ( )
( ) ( )

1| 0 ,   0 | 0 1 ,

0 | 1 ,  and 1 | 1 1 .

PFR P D X PTA P D X PFR

PFA P D X PTR P D X PFA

= = = = = = = −

= = = = = = = −
 

 
The inspection decision of a system D  depends on the 
inspection results of its sensors and the system Boolean 
function. Some examples (Elsayed 1996) are given below. 
 
Example 1. Series System 

The PFR and PFA for the k-series system are given by  

[ ]

1 1 0,

1 ( 0 | 0) 1
k k

jk
series j

j j j

T
PFR P d X

σ= =

⎛ ⎞
= − = = = − Φ ⎜ ⎟⎜ ⎟

⎝ ⎠
∏ ∏   and 

[ ]

1 1 1,

1
( 0 | 1)

k k
k i

series i
i i i

T
PFA P d X

σ= =

⎛ ⎞−
= = = = Φ ⎜ ⎟⎜ ⎟

⎝ ⎠
∏ ∏  

 
Example 2. Parallel System 

The PFR and PFA for the k-parallel system are given by 

[ ]

1 1 0

[ ]

1 1 1

( 1 | 0) [1 ]  and 

1
1 ( 1| 1) 1 [1 ]

k k
jk

parallel j
j j j

k k
k i

parallel i
i i i

T
PFR P d X

T
PFA P d X

σ

σ

= =

= =

⎛ ⎞
= = = = −Φ ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞−

= − = = = − −Φ ⎜ ⎟
⎝ ⎠

∏ ∏

∏ ∏
 

 
Example 3. Parallel-series System 

The PFR and PFA for the (n, m) parallel-series system 
(shown in Figure 2) are given by 

[ , ]

1 1

1 1 ,

[ , ]

1 1

1 1 1,

[1 ( 0 | 0)]

= [1 ]

1 [1 ( 0 | 1)]

1
= 1 [1 ]

n m
n m

parallel series ij
i j

n m
ij

i j o ij

n m
n m

parallel series ij
i j

n m
ij

i j ij

PFR P d X

T

PFA P d X

T

σ

σ

−
= =

= =

−
= =

= =

= − = =

⎛ ⎞
− Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

= − − = =

⎛ ⎞−
− − Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

∏ ∏

∏ ∏

∏ ∏

∏ ∏

 

 
Example 4. Series-parallel System 

The PFR and PFA for the (n, m) series-parallel system 
(shown in Figure 3) are given by 

[ , ]

1 1

1 1 ,

[ , ]

1 1

1 1 1,

1 [1 ( 1 | 0)]

= 1 {1 [1 ]}  and 

[1 ( 1| 1)]

1
= {1 [1 ]}

n m
n m

series parallel ij
i j

n m
ij

i j o ij

n m
n m

series parallel ij
i j

n m
ij

i j ij

PFR P d X

T

PFA P d X

T

σ

σ

−
= =

= =

−
= =

= =

= − − = =

⎛ ⎞
− − − Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

= − = =

⎛ ⎞−
− − Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

∏ ∏

∏ ∏

∏ ∏

∏ ∏

 

Ideally, we seek a set of threshold values of the sensors and 
system configurations in a system based on which both these 
errors are minimized. Unfortunately, this simultaneous 
minimization of both PFR and PFA is not possible, and 
reducing one error is likely to increase the other.  Therefore, 
we need to define an optimal policy that balances such a trade 
off.  

One feasible approach is through defining the expected cost 
of the system making a wrong decision. Let FAc  be the cost of 
the system accepting a “bad” container and FRc  be the cost of 
the system rejecting a “good” container.  Then the total cost of 
the system making a wrong decision is  

 (1 )  F FA FRC PFA c PFR cπ π= + − . 
The set of optimal threshold values is the one that 

minimizes the expected cost of the system making a wrong 
decision FC  over all possible combinations of sensors in the 
system and all possible threshold values: 

1 2{ , ,..., } arg mink FT T T C= . 
Although it may not be easy to assign a specific value, 

measuring the cost of false rejects FRc  is relatively 
straightforward. The cost of FR is the cost of additional tests. 
In the practice of port-of-entry inspection, these additional 
tests mean inspecting the contents manually. This is quite 
expensive since it might involve several workers for several 
hours and delays in completing the inspection and reduction in 
the inspection system throughput. Measuring the costs of false 
acceptance FAc  is even more challenging. Indeed, the cost of 
missing a container that contains illegal drugs is not 
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comparable to the cost of missing a container that holds a 
“dirty bomb”.  One way is to assign a large cost value, say a 
few hundred -or even more- times the cost of a false reject, 
however these choices are very subjective.   

A more flexible approach that avoids assigning exact values 
to the misclassification costs is the so called Receiver 
Operating Characteristics (ROC) curve. In diagnostic 
situations, an ROC curve provides a useful graphical 
representation of the tradeoff between the probability of false 
accept (PFA) and probability of false reject (PFR).  Typically, 
we plot the probability of true reject (PTR = 1 - PFA) against 
the probability of false reject  (PFR) while varying the 
threshold parameters and the arrangement of sensors in a 
system which results in an ROC curve as shown in Figure 1.  

 

Figure 1.  ROC Curve for Parallel System 
 

All of the points are in a [0,1] by [0,1] square box. The 
most upper-left points form a curve which is referred to as the 
ROC curve. The ROC curve is in fact the optimal curve in the 
sense of Pareto optimization; it consists of the best choices of 
threshold values under different conditions.  In particular, for 
any choices of ( FAc , FRc ), there is a point on the ROC curve that 
corresponds to the aforementioned optimization problem.  The 
ROC curve always passes through two points (0, 0) and (1, 1) 
in extreme cases. The point (0, 0) corresponds to 0 FAc =  and 

  FRc =∞, where the classifier finds no positives (detects no 
alarms).  In this case, it always classifies the negative cases 
correct but it classifies all positive cases wrong. The point (1, 
1) corresponds to   FAc =∞ and  0 FRc = , where all containers are 
classified as positive. So all positive cases are correctly 
classified but all negative cases are wrongly classified (i.e. it 
raises a false alarm on each negative case).  

The ROC Curves are flexible and useful tools in decision-
making. In practice, we often choose an operating point, a 
fixed point on the ROC curve, where a set of threshold levels 
can be determined. For a given condition, the best operating 
point might be chosen so that the classifier gives the best trade 
off between the costs of failing to detect positives against the 
costs of raising false alarms. In our port-of-entry problem, for 

example, we may be able to set a small tolerance level for the 
FA (so that the PTR will be always be constrained above this 
level) choosing a set of threshold values that minimizes the 
PFR. In this case, we can identify the operating point by 
drawing a vertical line at the tolerance level, where the 
interception of the ROC curve and this vertical line is the 
operating point; see Figure 1. The set of threshold values that 
corresponds to this operating point is the optimal choice that 
we are seeking. 

B. Expected Inspection Cost and Optimal Sequence 
In addition to the cost of making false decisions, there is 

also the cost of inspection itself. There are many possible 
ways to calculate the cost of obtaining a sensor reading. For 
instance, we can break down the cost of obtaining a sensor 
reading into two components: unit variable cost and fixed 
cost. The unit variable cost is just the cost of using the sensor 
to inspect one container, and the fixed cost is the cost of the 
purchase and deployment of the sensor itself. In many cases, 
the primary cost is the unit variable cost since many 
inspections are very labor intensive. The fixed cost is usually 
a constant and often does not contribute to the optimization 
functions, so for simplicity we disregard the fixed cost. Thus, 
the inspection cost is basically the expected cost of making 
observations for a container. Note that depending on the 
system configuration, a container may or may not be inspected 
by all sensors. The arrangement of the sensors is closely 
related to the inspection cost.   

Denote ip and iq by 
1

0

0 1

0 1

( 0) [ ( 0 | ) ( )]

1
(1 )  

and  

1
1 (1 ){1 } {1 }

i i i
j

i i

i i

i i
i i

i i

p P d P d X j P X j

T T

T T
q p

π π
σ σ

π π
σ σ

=

= = = = = =

⎛ ⎞ ⎛ ⎞−
= − Φ + Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞−
= − = − − Φ + − Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

. 

They are functions of threshold values iT . Let ic  be the 
inspection cost of sensor i. Zhang et al (2006) prove the 
following theorem.  

 
Theorem 1: (a) For a series Boolean decision function, 

inspecting attributes 1, 2, ,i n= K  in sequential order is 
optimum, minimizes expected inspection cost, if and only if: 

1 1 2 2/ / /n nc q c q c q≤ ≤K  (condition 1a).                                                      
In this case, the expected inspection cost is given by  

1

1
2 1

[ ]
in

I j i
i j

C c p c
−

= =

= + ∑ ∏ . 

(b) For a parallel Boolean decision function, inspecting 
attributes 1, 2, ,i n= K  in sequential order is optimum, 
minimizes expected inspection cost, if and only if:                   

1 1 2 2/ / /n nc p c p c p≤ ≤K  (condition 1b).                                                    
In this case, the expected inspection cost is given by  
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1

1
2 1

[ ]
in

I j i
i j

C c q c
−

= =

= + ∑ ∏ . 

We generalize these results to systems with arrangements of 
Parallel-Series and Series-Parallel sensors, given in Theorem 
2.  

1 j2 m

1 2 m

1 2 m

1 2 mPath n

j

j

j

Path 1

n

i

2

1

 
Figure 2.  Conceptual Network of Parallel-Series System 

 
Theorem 2:  (a) Consider a parallel-series decision 

function with n paths of m sensors each (see Figure 2). If an 
inspection system with attributes 1, 2, ,i n= K  and 

1, 2, ,j m= K  arranged in parallel-series is optimal, it 
satisfies the following conditions:  the inspection sequence of 
the series of sensors within each path should be arranged in 
the order of ,1 ,1 ,2 ,2 , ,/ / /i i i i i m i mc q c q c q≤ ≤K , and the 
inspection sequence of parallel paths should be arranged in 
the order of   1 1 2 2/ / /n nC P C P C P≤ ≤ ≤K  (condition 2a). 
Here, iC and iP  are the (minimal) inspection cost and the 
probability of acceptance of the ith path:  

1

1
2 1

1

1
2 1 0, 1,

[ ]

1
[(1 ) ]  

jm

i i ik ij
j k

jm
ik ik

i ij
j k ik ik

C c p c

T T
c c π π

σ σ

−

= =

−

= =

= +

⎛ ⎞ ⎛ ⎞−
= + − Φ + Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∏

∑ ∏
 

and 
1

( 0)
m

i i ij
j

P P D p
=

= = = ∏ . In this case, the minimal 

inspection cost is:  
1 1

1 1
2 21 1 1

[ (1 )] (1 ).  
i i mn n

I j i i jk
i ij j k

C C P C C C p
− −

= == = =

= + − = + −∑ ∑∏ ∏ ∏  

 

 

 
Figure 3.  Conceptual Network of Series-Parallel System  
 
(b) Consider a series-parallel decision function that has n 

subsystems in series with m units in parallel in each subsystem 
(see Figure 3). If an inspection system with attributes 

1, 2, ,i n= K and 1, 2, ,j m= K arranged in series-parallel is 
optimal, it satisfies the following conditions:  the inspection 
sequence of the series of each subsystem should be arranged 
in the order of ,1 ,1 ,2 ,2 , ,/ / /i i i i i m i mc p c p c p≤ ≤K , and the 
inspection sequence of parallel paths should be arranged in 
the order of 1 1 2 2/ / /n nC Q C Q C Q≤ ≤ ≤K  (condition 2b). 
Here, iC  and iQ  are the (minimal) inspection cost and the 
probability of rejection of the ith subsystem:  

1

1
2 1

1

1
2 1 0, 1,

[ ]

1
[(1 ){1 } {1 }]  

jm

i i ik ij
j k

jm
ik ik

i ij
j k ik ik

C c q c

T T
c c π π

σ σ

−

= =

−

= =

= +

⎛ ⎞ ⎛ ⎞−
= + − − Φ + − Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∏

∑ ∏

and 
1

( 1) (1 )
m

i i ij
j

Q P D p
=

= = = −∏ .   In this case, the minimal 

inspection cost is  
1 1

1 1
2 21 1 1

( ) {1 (1 )}.   
i i mn n

I j i i jk
i ij j k

C C P C C C p
− −

= == = =

= + = + − −∑ ∑∏ ∏ ∏  

The optimal arrangement of sensors depends on the values 
of p’s and q’s, which are functions of the threshold values. 
We formulate the optimization problem of choosing 
thresholds to minimize the inspection cost as follows: 

1 2{ , ,..., } arg mink IT T T C=  
where the optimization is over threshold values that satisfy the 
constraints given by the sufficient and necessary conditions 
1a, 1b, 2a, and 2b stated in the two theorems.    

C. Expected Total Cost- Combined Optimization 
In some situations, it is conceivable that we may consider 

the combined cost of making wrong decisions and inspection 
cost. In this case, the total expected cost is the sum of the 
expected inspection cost and the cost of wrong decision: 

total I FC C C= + . 
The total cost totalC  is calculated from the results of the 

previous sections. To facilitate the computation for different 
systems with a large number of sensors, we provide a 
induction methods which calculate the cost (both IC  and FC ) 
in Appendices 1-4. 

The optimization problem now becomes finding a set of 
threshold values 1 2{ , ,..., }kT T T  that minimizes the total 
expected cost:  

1 2{ , ,..., } arg mink TotalT T T C=  
among the sets of threshold values that satisfy the constraints 
in Section III.B. 

The optimal set of threshold values from this optimization 
may be different from those obtained from optimization by 

1 11 1

2 2 2

j j j

m m m

2

j

m

21 i n
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minimizing cost of misclassification errors or minimizing 
inspection cost. In the case of port-of-entry inspection, the 
optimal solution of the cost-combined optimization may be 
very close to the solution obtained by the former if IC  is 
much smaller than the cost of the system making a wrong 
decision. Note that in practice in the port-of-entry inspection, 
the cost of false positives is often the cost of additional 
testing, such as opening the container and manually inspecting 
its contents. This is quite expensive since it might involve 
several workers for hours, delays in completing the inspection, 
and reduction in the inspection system throughput as stated 
earlier in the paper. In comparison to routine inspection cost 
of unit testing such as neutron or gamma emissions detection, 
this FR cost is relatively high.  The FA cost would be even 
greater, including a huge potential social or economic impact.  

D. Optimization with Budget Consideration 
At a given port of entry of inspection station, the inspection 

practice is often constrained by budget. It is not possible to 
open and manually inspect every container or every cargo, 
which is by far the most accurate but also extremely costly 
inspection method.  If budget allows, we may want to allow 
more containers to be manually inspected, which in turn 
affects the sensor inspection process. For example, if the 
budget is large, it is possible to set low threshold levels to 
increase the PTR of the sensor system, and flag more 
containers for further manual inspection.   

In our formulation, the total budget in an inspection station 
covers both the initial cost of the inspection system and 
additional manual inspection cost. Therefore, the budget is 
defined by 

[(1 ) ]I manual I unpackbudget C C C c PFR PTRπ π= + = + − + , 

where IC  is the cost of initial system inspection, and unpackc  is 
the unit cost of additional manual inspection (unpacking the 
container).  

Under the budget constraint, we maximize the probability 
of properly classifying suspicious cargos passing through the 
entire inspection system, including the sensor inspection 
system and manual inspections.  So, the optimization problem 
can be described as:   

1 2

0

{ , ,..., } arg max
subject to:  Budget < 

kT T T PTR
B

=
 

where 0B is maximum available budget for the inspection 
station, and the 1 2{ , ,..., }kT T T  is selected from possible 
threshold level values.  We can formulate the budget 
constraint optimization problem similarly for other 
considerations. For example, minimization of the cost of 
making wrong decisions can be obtained by finding the 
argument of the minimum of FC  defined in Section III.A.  

This optimization problem can be presented by a graphical 
technique similar to the ROC curve, especially when we want 
to investigate the impact of the budget constraint. For 
instance, it is informative to investigate the relation between 
the chance of missing a suspicious cargo or dirty bomb and 

the budget. In this case, we plot the PTR = 1 – PFA against 
the total budget 0B  while varying the threshold values and the 
combination of sensors in an inspection system; see Figure 7. 
The most upper-left points form a curve. This curve consists 
of points corresponding to optimal threshold values and best 
combination of sensors at different budget levels.  

IV. SYSTEM ANALYSIS WITH NUMERICAL EXAMPLES 
This section includes computations for the Boolean 

functions: parallel, series, parallel-series, and series-parallel.  
Numerical examples, graphs, and results are also presented. 

 
Figure 4.  ROC Curves for Series-Parallel vs. Parallel-Series 
 
Figure 5 presents the minimum total cost of an inspection 

policy given the following system information: parallel 
Boolean decision function, unit misclassification penalty costs 

$500FRc =  and c $100,000FA = , unit inspection cost 

1 2 3 1c c c= = = , and distribution parameters 0 1iμ = , 1 2iμ = , 
and 0 1 0.5i iσ σ= =  (i=1,2,3).  The results are arranged by 
varying T1 values along the horizontal axis and each point 
represents an optimal combination of threshold values and 
sequence, with the total cost along the vertical axis.  The data 
series are the result of varying the prior distribution. 
 

 
Figure 5.  Minimum Cost Curves for Parallel System: Effect 
of T1 and Prior   
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Figure 5 also illustrates that for given parameters and prior 

distribution, there is an optimal sequence and threshold values 
that correspond to the minimum total cost.  For example, 
given 0.0002π = , the  combination of threshold values 
{ } [ ]*

1 2 3, , 0.45,0.50,0.50T T T T=  in the inspection sequence 
2 3 1− −  results in the minimum total cost for a system 
implementing a parallel Boolean decision function.  The 
variation of the prior probability value can influence the 
optimal inspection sequence but does not have much influence 
on the optimal threshold values in this example.   

 

 
Figure 6.  Minimum Cost Curves for Series System: Effect 
of T1 and Prior  
 
Figure 6 presents the results for a series Boolean decision 

function.  The parameter values and presentation of results are 
similar to the parallel Boolean example. In comparison to the 
results for the parallel Boolean decision function, the 
inspection sequence and threshold values for the series 
Boolean are not sensitive to small prior values.  As seen in 
Figure 6, the minimum cost curves for various prior values 
overlap.  In general, the total cost of the series system is 
higher than that for parallel for the given parameters.  This is 
due to the relative increase in the expectation of a costly false 
acceptance. 

 
  

 

 
 

Figure 7.  Budget Curve for Parallel System 
 

With the same parameters in the series system, we plot the 
relationship between the budget level and the probability of 
true reject; see Figure 7. If 0B  = 1.35 on the horizontal axis, 
the optimal threshold values are T*={0.75  0.05  0.75} and the 
probability of missing a suspicious cargo in the optimal case is 
about 1 0.8 0.2− = .  If we increase the budget from 0B  = 1.35 
to 0B = 1.50, the optimal T*={0.5  0.4  0.6} and the 
probability of missing a suspicious cargo decreases to less 
than 0.1.  Clearly, the 11% increase of the budget results in a 
significant increase in the detection of unacceptable 
containers.  Now with 0B  = 1.50, an additional budget 
increase of the same amount results in little change in the 
probability of missing a suspicious cargo. It is not cost 
effective to apply the additional amount of inspection. Such 
information may help decision makers in assigning 
appropriate budgets to the Port-of-entry inspection stations. 

V. DISCUSSION 
In this paper we investigated the POE problem with a small 
number of inspection stations. Complete enumeration of all 
possible threshold levels for each sensor resulted in 
determining the optimum threshold levels for the sensors such 
that the total inspection cost is minimized. This has been done 
for series, parallel, series-parallel and parallel-series sensors 
configurations.  The key factor that has a direct effect on the 
determination of the sensors threshold levels is the cost of 
misclassification of the container with type I error.  This cost 
is difficult to estimate as it is a function of many unknowns 
but its effect could be catastrophic.  Clearly, tightening the 
threshold levels will minimize the type I error but may 
increase the cost of delaying the container.  This has not been 
considered in this research but raises an important 
consideration of not only the cost of container inspection but 
also the cost of delay incurred in the system.  Hence, we have 
two conflicting objectives.  This is a multi-objective 
optimization problem which will be investigated in the future.  
Likewise, the optimum inspection sequencing problem has not 
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been addressed in this paper and it demands  further work.  
Finally, the determination of the optimum threshold levels of 
sensors arranged in non standard arrangements such as a 
general network of sensors or k-out-of-n arrangement 
warrants further investigation. 

APPENDICES 
A.1 Induction Formula for the Parallel System  

Suppose the ( 1)thk +  sensor is added to the k-parallel 
sensors with 1 1 1 1 / / /K K k kc p c p c p+ +≤ ≤ ≤K .  For this system 
of (k+1) parallel sensors, the cost of inspection can be 
calculated by the following induction formula: 

[1] [ 1] [ ]
1 1

1

and ,  for 1, 2,...
k

k k
I I I k j

j

C c C C c q k+
+

=

= = + =∏  

The cost function of making a false decision is: 
[ 1] [ 1] [ 1](1 ) (1 ) ,k k k
F FA FRC c A c Bπ π+ + += − + −  

where [ 1] [ 1] and k kA B+ + can be computed by the following 
induction formulas: 

[1] [1] [ 1] [ ] 11 1

11 01 1, 1

[ 1] [ ] 1

0, 1

11
,  ,  ,  

and ,  for 1, 2,... and 1 .

 k k k

k

k k k

k

TT T
A B A A

T
B B k

σ σ σ

σ

+ +

+

+ +

+

−−
= Φ = Φ = Φ

= Φ = Φ = − Φ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

A.2 Induction Formula for the Series System  

Suppose the ( 1)thk +  sensor is added to the k-series sensors 
with 1 1 1 1/ / /k k k kc q c q c q+ +≤ ≤ ≤K  . For this system of (k+1) 
series sensors, the cost of inspection can be calculated by the 
following induction formula:  

[1] [ 1] [ ]

1
1 1 and ,  for 1, 2,...

k
k k

I I I j
j

kC C C c p kc +

=
+= + == ∏  

The cost function of making a false decision is 
[ 1] [ 1] [ 1](1 ) (1 ),k k k
F FA FRC c A c Bπ π+ + += + − −   

where [ 1] [ 1] and k kA B+ + can be computed by the following 
induction formulas: 

[1] [1] [ 1] [ ] 11 1

11 01 1, 1

[ 1] [ ] 1

0, 1

11
 ,  , ,  

and ,  for 1, 2,...

k k k

k

k k k

k

TT T
A B A A

T
B B k

σ σ σ

σ

+ +

+

+ +

+

⎛ ⎞⎛ ⎞⎛ ⎞ −−
= Φ = Φ = Φ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
= Φ =⎜ ⎟⎜ ⎟

⎝ ⎠

 

A.3 Induction Formula for the Parallel-Series System 

Step 1: Add (m+1)th sensor to each branch:  
(n, m)→(n, m+1) 

If ,1 ,1 , , , 1 , 1/ / /i i i m i m i m i mc q c q c q+ +≤ ≤ ≤K  for all branches, 
Section III-B gives the minimum inspection cost as 

,1 ,

1 1
[ 1] [ 1] [ 1]

,
2 1 1

[1 ],
I I i

i mm
m m m

I j k
i j k

C C C p
− +

+ + +

= = =

= + −∑ ∏ ∏  

where the inspection cost of the ith path of m+1 sensors in 

series [ 1]
,
m

I iC + , for 1, 2,...,i n= , can be calculated by the 
induction formula in A.2.  

From the results from Section III-A, the total expected cost 
for wrong decision is 

[ 1] [ 1] [ 1][1 ] (1 ) ,m m m
F FA FRC c PM c PNπ π+ + += − + −  

where [ 1] [ 1] [ 1] [ 1]

1 1

{1 }, {1 }
n n

m m m m
i i

i i

PM M PN N+ + + +

= =

= − = −∏ ∏ , and 

[ 1] [ 1] and m m
i iM N+ + can be updated by the following induction 

formulas 

, 1 , 1[ 1] [ ] [ 1] [ ]

1,( , 1) 0,( , 1)

1
and .       i m i mm m m m

i i i i
i m i m

T T
M M N N

σ σ
+ ++ +

+ +

⎛ ⎞ ⎛ ⎞−
= Φ = Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 
Step 2:  Add the (n+1)th branch with m sensors:  
(n, m) →(n+1, m) 

If ,1 1 , , 1 1/ / /I I n n I n nC Q C Q C Q+ +≤ ≤ ≤K , Section III-B gives 
the minimum inspection cost as: 

            [ 1] [ ]
, 1

n n
I I I n nC C C G+

+= +  

1 1 1

1 , 1,

where  can be updated by induction:
 ,  and ,  

1
with 1 [(1 ) ] .

n

j j j

m
js js

j
s o js js

G
G Q G G Q

T T
Q π π

σ σ

+

=

= =

⎛ ⎞ ⎛ ⎞−
= − − Φ + Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏

 

From the result of Section III-A, the total expected cost for 
wrong decision is 

 [ 1] [ ] [ ]
1 1 [1 ] (1 )n n n

F n FR nFAC c PA A c PB Bπ π+
+ += − + −  

where [ 1] [ 1] and  n nPA PB+ +  can be updated by induction 
formula, for j =1, 2, …, N,  

[1] [ 1] [ ]
1

[1] [ 1] [ ]
1

, ,  

, ,

j j
j

j j
j

PA A PA PA A

PB B PB PB B

+

+

= =

= =
 

and, for j =1, 2, …, n+1,  

1 11, ,

1
1   and  1 .     

m m
ij ij

i i
j jij o ij

T T
A B

σ σ= =

⎛ ⎞ ⎛ ⎞−
= − Φ = − Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏  

 
A.4 Induction Formula for the Series-Parallel System 

Step 1: Add the (m+1))th sensor in each subsystem:  
(n, m) → (n, m+1)  

If ,1 ,1 , , , 1 , 1/ / /i i i m i m i m i mc p c p c p+ +≤ ≤K  for all the branches, 
Section III-B gives the minimum inspection cost as 

,1 ,

1 1
[ , 1] [ 1] [ 1]

2 1 1

[1 (1 )]
I I i

i mn
n m m m

I js
i j s

C C C p
− +

+ + +

= = =

= + − −∑ ∏ ∏  

where the inspection cost of the ith path of m+1 sensors in 
series [ 1]

,
m

I iC + , for 1, 2,...,i n= , can be calculated by the 
induction formula in A.1. 

From the result of Section III-A, the total expected cost for 
wrong decision is 

[ 1] [ 1] [ 1]( ) (1 ) (1 )m m m
F FA FRC c PA c PBπ π+ + += + − −  
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where [ 1] [ 1] [ 1] [ 1]

1 1

{1 }, {1 }
n n

m m m m
i i

i i

PA A PB B+ + + +

= =

= − = −∏ ∏ , and 

[ 1] [ 1] and m m
i iA B+ + can be updated by induction formula: 

, 1 , 1[ 1] [ ] [ 1] [ ]

1, ( , 1) 0 , ( , 1)

1
,  , with 1 .    i M i mm m m m

i i i i

i M i m

T T
A A B B

σ σ
+ ++ +

+ +

−
= Φ = Φ ΦΦ = −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Step 2: Add the (n+1)th subsystem with m sensors:  
(n, m) → (n+1, m) 

If ,1 1 , , 1 1/ ... / /I I n n I n nC Q C Q C Q+ +≤ ≤ ≤ , Section III-B gives 
the minimum inspection cost as: 

            [ 1] [ ]
, 1

n n
I I I n nC C C G+

+= +  

where nG  can be updated by induction: 

1 1 1

1 , 1,

 ,  and ,  

1
with  1 [(1 ) ].

j j j

m
js js

j
s o js js

G P G G P

T T
P π π
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=
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⎝ ⎠ ⎝ ⎠
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From the result of Section III-A, the total expected cost for 
wrong decision is 

[ 1] [ ] [ ]
1 1(1 ) n n n

F FA n FR nC c PA A c PB Bπ π+
+ += + −  

where [ 1] [ 1] and  n nPA PB+ +  can be updated by induction 
formula, for j =1, 2, …, n, 

[1] [ 1] [ ]
1

[1] [ 1] [ ]
1

, ,  

, ,

j j
j

j j
j

PA A PA PA A

PB B PB PB B

+

+

= =

= =
 

and, for j =1, 2, …, n+1, 

1 11, ,

1
1  , 1 , with 1 .

m m
ij ij

i i
j jij o ij

T T
A B

σ σ= =

−
= − Φ = − Φ Φ = − Φ

⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠

∏ ∏  
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