Crypto for PRAIM from iO
(via Succinct Garbled PRAM)

Kai-Min Chung
Academia Sinica, Taiwan

Joint work with:
Yu-Chi Chen, Sherman S.M. Chow, Russell W.F. Lai,
Wei-Kai Lin, Hong-Sheng Zhou

Computation in Cryptography

e Examples:
— Multiparty Computation (MPC)
— Non-interactive Zero Knowledge Proof (NIZK)
— Fully Homomorphic Enc. (FHE)
— Functional Encryption (FE)
— Delegation with Persistent Database
— Indistinguishability Obfuscation (iO)

* Traditionally, modeled as circuits

* Feasibility in more powerful computation model?

Models of Computation

. . A - D o

e o Fﬁ?ﬁ“ A O ERT RS
Parallelizable

* Turing Machines

Small description size resctvrte device — [

~
e ¥

\ .
— s
l'. g

Efficiency Gap

Problem Comp. Model Total Time Parallel Time
Circuit Q(n)
Binary search
(input size n) RAM O(log n)
Circuit O(log n)
Sorting
RAM Q (nlog n)
Circuit Q (n) O(log n)
Keyword search/
Range query RAM O(mlog n) Q(mlog n)
(output size m)
PRAM O(mlog n) O(log n)

Parallel Model in Practice

 Emerging frameworks to handle big data
— MapReduce, Graphlab, Spark, etc.

e Leverage massive parallelism & random data access

— Circuit & RAM are not expressive enough

* PRAM: clean & expressive model to capture efficiency
(total & parallel time & space) of these frameworks

Feasibility via Succinct Garbling

Succinct Garbling
for Model X

[GHRW 4,CHJV 5,
BGLPTI5,KLW15]

Delegation

for X w/
Persistent DB

MPC NIZK | [Functional Enc.
for X for X for X

iO
for X

Succinct Garbling for Model X

[1=(Px) w==p

Garb(II)

* Succinctness: Time(Garb(II)) = poly(]|II])
* Eval Efficiency: Complexity in Model X of

Eval(Garb(II)) = Eval(II) (up to polylog overhead)

Garb(II)

NS
NS

* Security: II, IT" same complexity & output =

Garb(II’)

Feasibility via Succinct Garbling

iO for circuit

+ OWF

@ [KLW15]

for X =TM

Succinct Garbling

BGLPTI5,KLW15]

@ [GHRW 14,CHJV15,

Delegation

for X w/
Persistent DB

MPC NIZK
for X for X

for X

Functional Enc.

iO
for X

Our Contribution

iO for circuit
+ OWEF

U

Succinct Garbling
for X = PRAM

[GHRW 4,CHJV 5,
BGLPTI5,KLW15]

Delegation

for X w/
Persistent DB

MPC NIZK | [Functional Enc.

for X for X for X

iO
for X

Concurrent Work [CH16]

iO for circuit
+ OWEF

@ Modular Proof

Succinct Garbling
for X = RAM

[GHRW 4,CHJV 5,
BGLPTI5,KLW15]

Delegation

for X w/
Persistent DB

MPC NIZK | [Functional Enc.
for X for X for X

iO
for X

Succinct Garbling for TV [KLW15]

Abstraction of [KL\W15]

iO for circuit

+ OWF
Authentication
@ Step
ST-Garbling Same-Trace Garbling
for M

@ Hiding Step

Succinct Garbling
for TM

Same-Trace Garbling for TIVI/RAIVI
Computation Trace =
initial-value),

I (st;, addr,, val,),
(st,, addr,, val,),

(st,, addr,, val,)
TM/CPU T
Program P
(sty.q, addr;, val;),

(sty, addr, val;)

* Secu rity: H, [1” same trace (so same inp/out, complexity) =

Garb(Il) | &~ | Garb(IT’)

Indistinguishability Obfuscation

(i0)

[BGI+12,GGH+13]

* Scramble program to make it “unintelligible”

P -

O(P)

* Maintain functionality: O(P)(x) = P(x) V x
e Security: If P(x) =P’(x) V x & same size =

O(P)

"N
"y

O(P’)

Abstractio

iO for circuit
+ OWEF

n of [KLW15]

ST'Garb(P; X) = (iO(Pauth)l Xauth)

ST-Garbling

Authentication
@ Step
[Only generate comp. trace of P(x)

for M

@ Hiding Step

Garb(P, x) = (ST‘Garb(Phige;

))
iaer’
Succinct Garbling| | Hide memory/CPU state content &
for TM memory access pattern

Authentication & Hiding in [KLW15]

* Authentication step: ST-Garb(P, x) = (iO(P_), X yen)
— iO-friendly authentication primitives
— Enable program switching step by step in hybrids

p p p p p

CaCacaE

PI PI PI PI PI

Authentication & Hiding in
[KLW15]

* Authentication step: ST-Garb(P, x) = (iO(P_), X yen)
— iO-friendly authentication primitives
— Enable program switching step by step in hybrids
* Hiding step: Garb(P, x) = (ST-Garb(Py,.4e, Xige))
— Hide content by encryption
— Hide access pattern by Oblivious TM [PF79]
— Allow erasing computation step by step in hybrids

CACACHE

Succinct Garbling for RAM

Challenge: Hiding Access Pattern

Garb(P, x) = (ST-Garb(P,ze, Xpige))

* Replace Oblivious TM by Oblivious RAM [GO96]

* |ssue: Cannot use ORAM security

— ORAM is inherently randomized, security hold only when
ORAM randomness is hidden

e |dea: “Puncturing” ORAM

Puncturing ORAM

e Use tree-based ORAM [SLSC11], which is “puncturable”

— t-th step access pattern is determined by single randomness r,

— if r,is punctured/erased from program, t-th step access pattern
can be simulated by random

* Puncturingr,
— r,may appear multiple times (encrypted) in history
— Carefully erase r,backward in time step by step
* Modify program: “erase r, after step s” fors = t, t-1,...,0

Puncturing ORAM

e Use tree-based ORAM [SLSC11], which is “puncturable”

— t-th step access pattern is determined by single randomness r,

— if r,is punctured/erased from program, t-th step access pattern
can be simulated by random

* Puncturingr,
— r,may appear multiple times (encrypted) in history
— Carefully erase r,backward in time step by step
* Modify program: “erase r, after step s”

[CH16]: “2 tracks trick” w/ modular & simpler proof

Succinct Garbling for PRAIM

Challenge: Authenticate Memory

ST'Garb(P; X) = (iO(Pauth)' Xauth)

* Memory authenticated by “Merkle tree”
— root stored in CPU state
— Locally updatable by given augment path

e |ssue: Parallel CPU = Parallel Update

— Require CPU-to-CPU communication

Memory

/N ™~

Challenge: Authenticate Memory

ST'Garb(P; X) = (iO(Pauth)' Xauth)

* Memory authenticated by “Merkle tree”
— root stored in CPU state
— Locally updatable by given augment path

e |ssue: Parallel CPU = Parallel Update

— Require CPU-to-CPU communication
e |ssue: Cannot afford ((m) overhead in parallel time

— Otherwise, void the gain of parallelism

Parallel Update Problem

N

N\

addr, addr, addr, addr,, addr,
aug-path, aug-path, aug-path,

Challenge: Authenticate Memory

ST'Garb(P; X) = (iO(Pauth)' Xauth)

* Memory authenticated by “Merkle tree”
— root stored in CPU state
— Locally updatable by given augment path

e |ssue: Parallel CPU = Parallel Update

— Require CPU-to-CPU communication
* |ssue: cannot afford {(m) overhead in parallel time
— Otherwise, void the gain of parallelism

* O(log?m) -round parallel algorithm

— Parallel update level-by-level from leaves to root

Security Issue: High Pebble Complexity

Put “pebble” on node to switch program

p p p p p p
PI PI PI PI PI PI

Put pebble on node require to hardwire input/output

Security Issue: High Pebble Complexity

Can use 2m pebbles to traverse graph, but not better
= Need to hardwire ()(m) information in P_,
= poly(m) overhead

Branch & Combine Emulation

Change topology to reduce pebble complexity
* Combine m CPU states to 1 combined state
* Branch one step computation from it

Branch & Combine Emulation

Change topology to reduce pebble complexity
* Combine m CPU states to 1 combined state
* Branch one step computation from it
Claim: pebble complexity = O(log m)

Branch & Combine Emulation

Change topology to reduce pebble complexity
e Combine m CPU states to 1 combined state
* Branch one step computation from it
Claim: pebble complexity = O(log m)

e Combine step
— Build “Merkle tree” on CPU states
— Combined state = root

* Branch step

— Authentication & one step computation

Hiding Step for PRAM

Garb(P, x) = (ST-Garb(P}4e, Xhige))

 Replace ORAM by Oblivious PRAM [BCP16]

— also puncturable

Summary and Open Problems

Feasibility of crypto for PRAIM based on iO via
succinct garbled PRAVI

Adaptive succinct garbled (Paralle) RAM with
persistent memory (next talk) [ACC+15,CCHR15]

Open: FHE for RAM/PRAM?

Open: Crypto for PRANM without iO
— ABE for RAMI/PRAM based on LWE?

Other parallel model?

Thank you! Questions?

34

