
Crypto for PRAM from iO
(via Succinct Garbled PRAM)

Kai-Min Chung

Academia Sinica, Taiwan

Joint work with:

Yu-Chi Chen, Sherman S.M. Chow, Russell W.F. Lai,

Wei-Kai Lin, Hong-Sheng Zhou

Computation in Cryptography

• Examples:
–Multiparty Computation (MPC)
– Non-interactive Zero Knowledge Proof (NIZK)
– Fully Homomorphic Enc. (FHE)
– Functional Encryption (FE)
– Delegation with Persistent Database
– Indistinguishability Obfuscation (iO)

• Traditionally, modeled as circuits

• Feasibility in more powerful computation model?

Models of Computation

• Circuits

• Turing Machines

• RAM Machines

• Parallel RAM

AND, OR, NOT gates

…

Large description size
Parallelizable

Small description size

Random data access

Random data access

Parallelizable

Efficiency Gap

Problem Comp. Model Total Time Parallel Time

Binary search
(input size n)

Sorting

Keyword search/
Range query

(output size m)
PRAM

Circuit

RAM

Circuit

RAM

Circuit

RAM

Ω (n)

𝑂(log n)

𝑂(log n)

Ω (nlog n)

Ω (n) 𝑂(log n)

𝑂(mlog n) Ω(mlog n)

𝑂(mlog n) 𝑂(log n)

Parallel Model in Practice

• Emerging frameworks to handle big data

– MapReduce, GraphLab, Spark, etc.

• Leverage massive parallelism & random data access

– Circuit & RAM are not expressive enough

• PRAM: clean & expressive model to capture efficiency
(total & parallel time & space) of these frameworks

Feasibility via Succinct Garbling

Succinct Garbling

for Model X

Delegation

for X w/

Persistent DB

Functional Enc.

for X

NIZK

for X
MPC

for X

iO

for X

[GHRW14,CHJV15,

BGLPT15,KLW15]

Succinct Garbling for Model X

• Succinctness: Time(Garb(Π)) = poly(|Π|)

• Eval Efficiency: Complexity in Model X of

Eval(Garb(Π)) ≈ Eval(Π) (up to polylog overhead)

• Security: Π, Π’ same complexity & output ⟹

Π=(P,x) Garb(Π)

Garb(Π) Garb(Π’)≈

Feasibility via Succinct Garbling

Succinct Garbling

for X = TM

Delegation

for X w/

Persistent DB

Functional Enc.

for X

NIZK

for X
MPC

for X

iO

for X

[GHRW14,CHJV15,

BGLPT15,KLW15]

iO for circuit

+ OWF

[KLW15]

Our Contribution

Succinct Garbling

for X = PRAM

Delegation

for X w/

Persistent DB

Functional Enc.

for X

NIZK

for X
MPC

for X

iO

for X

[GHRW14,CHJV15,

BGLPT15,KLW15]

iO for circuit

+ OWF

Concurrent Work [CH16]

Succinct Garbling

for X = RAM

Delegation

for X w/

Persistent DB

Functional Enc.

for X

NIZK

for X
MPC

for X

iO

for X

[GHRW14,CHJV15,

BGLPT15,KLW15]

iO for circuit

+ OWF

Modular Proof

Succinct Garbling for TM [KLW15]

Abstraction of [KLW15]

ST-Garbling

for TM

iO for circuit

+ OWF

Succinct Garbling

for TM

Authentication
Step

Hiding Step

Same-Trace Garbling

Same-Trace Garbling for TM/RAM

Garb(Π) Garb(Π’)≈

• Security: Π, Π’ same trace (so same inp/out, complexity) ⟹

TM/CPU
Program P

Memory
Computation Trace =

(initial-value),
(st1, addr1, val1),
(st2, addr2, val2),
(st3, addr3, val3),

…
(stT-1, addrT-1, valT-1),

(stT, addrT, valT)

Indistinguishability Obfuscation
(iO)

• Scramble program to make it “unintelligible”

• Maintain functionality: 𝒪(P)(x) = P(x) ∀ x

• Security: If P(x) = P’(x) ∀ x & same size ⟹

P 𝒪(P)

[BGI+12,GGH+13]

𝒪(P’)𝒪(P) ≈≈

Abstraction of [KLW15]

ST-Garbling

for TM

iO for circuit

+ OWF

Succinct Garbling

for TM

Authentication
Step

Hiding Step

ST-Garb(P, x) = (iO(Pauth), xauth)

Garb(P, x) = (ST-Garb(Phide,
xhide))

Only generate comp. trace of P(x)

Hide memory/CPU state content &
memory access pattern

Authentication & Hiding in [KLW15]

• Authentication step: ST-Garb(P, x) = (iO(Pauth), xauth)

– iO-friendly authentication primitives

– Enable program switching step by step in hybrids

state0 state1 state2 stateT-2 stateT-1 stateT…
P P P P P P

P’ P’ P’ P’ P’ P’

Authentication & Hiding in
[KLW15]

• Authentication step: ST-Garb(P, x) = (iO(Pauth), xauth)

– iO-friendly authentication primitives

– Enable program switching step by step in hybrids

• Hiding step: Garb(P, x) = (ST-Garb(Phide, xhide))

– Hide content by encryption

– Hide access pattern by Oblivious TM [PF79]

– Allow erasing computation step by step in hybrids

ct0 ct1 ct2 ctT-2 ctT-1 ctT… ctdummyctdummyctdummyctdummyctdummyctdummy

Succinct Garbling for RAM

Challenge: Hiding Access Pattern

• Replace Oblivious TM by Oblivious RAM [GO96]

• Issue: Cannot use ORAM security

– ORAM is inherently randomized, security hold only when
ORAM randomness is hidden

• Idea: “Puncturing” ORAM

Garb(P, x) = (ST-Garb(Phide, xhide))

Puncturing ORAM
• Use tree-based ORAM [SLSC11], which is “puncturable”

– t-th step access pattern is determined by single randomness rt

– if rt is punctured/erased from program, t-th step access pattern
can be simulated by random

• Puncturing rt

– rt may appear multiple times (encrypted) in history

– Carefully erase rt backward in time step by step

• Modify program: “erase rt after step s” for s = t, t-1,…,0

ct0 ct1 ct2 ctT-2 ctT-1 ctT…

rTctrT
ctrT

ctrT

Puncturing ORAM
• Use tree-based ORAM [SLSC11], which is “puncturable”

– t-th step access pattern is determined by single randomness rt

– if rt is punctured/erased from program, t-th step access pattern
can be simulated by random

• Puncturing rt

– rt may appear multiple times (encrypted) in history

– Carefully erase rt backward in time step by step

• Modify program: “erase rt after step s”

[CH16]: “2 tracks trick” w/ modular & simpler proof

Succinct Garbling for PRAM

Challenge: Authenticate Memory

• Memory authenticated by “Merkle tree”

– root stored in CPU state

– Locally updatable by given augment path

• Issue: Parallel CPU ⟹ Parallel Update

– Require CPU-to-CPU communication

CPU1

Memory

CPU2 CPUm
…

ST-Garb(P, x) = (iO(Pauth), xauth)

Challenge: Authenticate Memory

• Memory authenticated by “Merkle tree”

– root stored in CPU state

– Locally updatable by given augment path

• Issue: Parallel CPU ⟹ Parallel Update

– Require CPU-to-CPU communication

• Issue: Cannot afford Ω(m) overhead in parallel time

– Otherwise, void the gain of parallelism

ST-Garb(P, x) = (iO(Pauth), xauth)

Parallel Update Problem

addr2 addr3 addr1 addrm addr4

aug-path2 aug-path3
aug-path4…

Challenge: Authenticate Memory

• Memory authenticated by “Merkle tree”

– root stored in CPU state

– Locally updatable by given augment path

• Issue: Parallel CPU ⟹ Parallel Update

– Require CPU-to-CPU communication

• Issue: cannot afford Ω(m) overhead in parallel time

– Otherwise, void the gain of parallelism

• O(log2m) -round parallel algorithm

– Parallel update level-by-level from leaves to root

ST-Garb(P, x) = (iO(Pauth), xauth)

Security Issue: High Pebble Complexity

state0 state1 state2 stateT-2 stateT-1 stateT…
P P P P P P

P’ P’ P’ P’ P’ P’

Put pebble on node require to hardwire input/output

Put “pebble” on node to switch program

Security Issue: High Pebble Complexity

state1,0 state1,1 state1,2 state1,T-2 state1,T-1 state1,T…

state2,0 state2,1 state2,2 state2,T-2 state2,T-1 state2,T…

state3,0 state3,1 state3,2 state3,T-2 state3,T-1 state3,T…

state4,0 state4,1 state4,2 state4,T-2 state4,T-1 state4,T…

Can use 2m pebbles to traverse graph, but not better
⇒ Need to hardwire Ω(m) information in Pauth

⇒ poly(m) overhead

Branch & Combine Emulation

combt-1

state1,t

state2,t

state3,t

state4,t

int2,t

int1,t

combt

state1,t+1

state2,t+1

state3,t+1

state4,t+1

int2,t+1

int1,t+1

combt+1

Change topology to reduce pebble complexity
• Combine m CPU states to 1 combined state
• Branch one step computation from it

…

Branch & Combine Emulation

combt-1

state1,t

state2,t

state3,t

state4,t

int2,t

int1,t

combt

state1,t+1

state2,t+1

state3,t+1

state4,t+1

int2,t+1

int1,t+1

combt+1

Change topology to reduce pebble complexity
• Combine m CPU states to 1 combined state
• Branch one step computation from it
Claim: pebble complexity = O(log m)

…

Branch & Combine Emulation
Change topology to reduce pebble complexity
• Combine m CPU states to 1 combined state
• Branch one step computation from it
Claim: pebble complexity = O(log m)

• Combine step

– Build “Merkle tree” on CPU states

– Combined state = root

• Branch step

– Authentication & one step computation

Hiding Step for PRAM

• Replace ORAM by Oblivious PRAM [BCP16]

– also puncturable

Garb(P, x) = (ST-Garb(Phide, xhide))

Summary and Open Problems
• Feasibility of crypto for PRAM based on iO via

succinct garbled PRAM

• Adaptive succinct garbled (Paralle) RAM with
persistent memory (next talk) [ACC+15,CCHR15]

• Open: FHE for RAM/PRAM?

• Open: Crypto for PRAM without iO

– ABE for RAM/PRAM based on LWE?

• Other parallel model?

Thank you! Questions?

34

