Secure Computation of MIPS
Machine Code

Gordon, Katz, Mclntosh, Wang

Efficiency vs. Generality

generality efficiency

Domain specific languages
that approximate certain high
level languages. Constructions tailored
towards particular

applications.
Machine code / legacy code PP

Legacy Code

Moving to the RAM model offers the possibility
of securely emulating real architectures.

|H

In theory, we can support “real” languages, their
existing libraries, and existing compilers.

What would this take in practice?

|deal world: the programmer has never heard the
words “secure computation”.

Oblivious RAM [GO9S,...]

client (Vll dl)/ (VZI dz) ey (Vn) dn) server
access pattern 1: (r, ve), (r, vy), (W, v,,d,) ..., (W, v, d,)
access pattern 2: (r, vyq), (r, vq), (F vq) oo, (1, vy)

ANY 2 access patterns are indistinguishable

ORAM in secure computation

Who should hold the ORAM?
Recall, the client fetches items from the server.
Alice shouldn’t see Bob’s items, and Bob Shouldn’t see Alice’s.

1
L.

X F(x,y) y

ORAM in Secure Computation

But even if Alice sees which of her own items are fetched
she learns something about y.
(Consider a binary search for y among the items in X)

Oblivious RAM (abstraction)

V

4

$

vil, .. vlloen)

1 of the log n will
match, output D

v(2)
state(2

V(Iogn)
statellogn)

=

state(o)l

—B

state() l

statellogn-) l

D —

“secret shares”
Vi Vs

state, (Dstate, = state

=V

CCS 2012

Vi

Vz_l

state,(©
state,(?

state, V) l
state, V)

state, (log n-1)
state,(log n-1)

Y
A
o)

O O
N

CCS 2012

(state,©), inst,) inst, (0
. i 0 l
(state,?), inst,) inst,

state,(©
state,(?

Y
A
o)

state, V)

(
(1)
RAM Statez Statel(l) l
(o)

PROGRAM

(BINARY SEARCH)

state, (log n-1)

(log n-1)
(state,(loen), D) tate;

|
(state,lloen) D.) vieen
2 221 state,(losn)
)

O O
N

Current Work (pARPA: PROCEED)

new 32-registers

new progCounter NP progCounter
ObliVM
Y /
CPU \E
MIPS ARCHITECTURE O

new instruction
32-registers

new 32-registers LOAD/STORE

instruction _ WORD

progCounter

Current Work

new 32-registers
new progCounter NP progCounter

INSTRUCTION
FETCH

MIPS ARCHITECTURE

new instruction
new 32-registers KoJ:\oJAY [o]:{- 0 32-registers

instruction _ WORD

progCounter

Current Work

new 32-registers
new progCounter

CPU

MIPS ARCHITECTURE

new 32-registers
instruction
progCounter

Why MIPS?
* Fixed register space = fixed circuit.

* With approximately 15 instructions, we
can compute:

Djikstra, longest common sub-string, set-
intersection, stable marriage, binary
search, decision trees...

e Easy to implement!
e 15 instructions = small circuit.

* We first proposed LLVM, but
instructions in LLVM are polymorphic
objects.

On the other hand:

 ARM or x86 would give bigger circuits,
but smaller programs. Ultimately, | don’t
know which is best.

Current Work

new 32-registers
new progCounter

INSTRUCTION
FETCH

MIPS ARCHITECTURE

new instruction
new 32-registers KoJ:\oJAY [o]:{- 0 32-registers

instruction WORD
progCounter

Component Run-Times

ALU
~ 15 instructions ~ 7K AND gates

Memory
Fetch from 1024 32-bit words ~ 43K AND gates

Improvement #1: Instruction Mapping

Divide all instructions into separate “banks”

Bank: contains instructions that could be
executed in the it cycle.

Instruction Mapping

If (x > 5)
Instrl «——
instr2

else
instr3
instr4

s

D —

for (i=1tox)
instrl] <——
instr2 <

end for

instr3 D
instr4d D —
Instr5 «—

If x is tainted:
instrl and instr3 must go
in the same ORAM bank

and
instr2 and instr4 must go
in the same ORAM bank

:instrl

: instr2

: instrl or instr3

. instr2 or instrd

. instrl or instr3 or intsr5

loop size t, program length n:
n/t banks, each of size t.

~ & & e+ e+
I
o » W N B

Instruction Mapping

Wade through
fewer
instructions!

INSTRUCTION
FETCH

MIPS ARCHITECTURE

Reduce the
number of

. . I . .
Instructions! 5k|p this on

Kol oYy [o]: {3 MANY steps!
WORD

Instruction Mapping

MIPS ARCHITECTURE

Set Intersection:
Reduce the Reduces the average ALU size from

number of 6727 to 1848 AND gates. (3.5X)
instructions!

Instruction Mapping

Wade through
fewer
instructions!

INSTRUCTION

FETCH

Set Intersection:

The full program has about 150 instructions.

The largest instruction bank after mapping has 31 instructions.

More than half the instruction banks have fewer than 20 instructions.

Instruction Mapping

Unfortunately, even after instruction mapping,
load/store operations still might occur
in almost every time step.

skip this on
ToY-\oYAY(o]: {3 M OST steps! @
WORD

Improvement #2: padding

for (i=1 to x) If two branches are relatively
prime, one of length k,, the other

If (x > 5) k,, then in less than k,k, time-steps,
instrl «—— we will cover the entire loop.
instr2 <——

else
instr3 <— By padding branches such that the
instr4 <—— lengths are relatively composite, we
instr5 < can greatly reduce the number of
Instr instructions per bank:

for set intersection, we go from ~
40 down to 4.

Padding

We padded 2 of 3 branches that appear in the
main loop using a total of 6 NOP instructions.

Before padding we found that a load/store operation
might be executed in almost every time step.

After padding, we find that for only 1/10 of all
time steps require a load/store operation.

skip this on
ToY-\oYAy(o]: {3 M OST steps! ©
WORD

Set Intersection

o)
-
T

7—|

BN ALU
EZZ1] Fetch Inst.
=1 Mem Access

W
S
T

N
S
T

[\
(a)
T

Time (Seconds)
W
e}

[—
S
1

i
2
=S

Baseline +Inst. Mapping +Padding

Run-time decomposition for computing set-
intersection size when each party's input
consists of 64 32-bit integers.

3000
2500
2000

Time (Seconds)
&
S
S

1000

_ N
500}
o—é———

-
l\ B ALU

2 Fetch Inst.
E=1 Mem Access

Baseline +Inst. Mapping +Padding

Run-time decomposition for computing set-
intersection size when each party's input
consists of 1024 32-bit integers.

Set Intersection

Input Size per Party Memory Access Instruction Fetch ALU Computation Average per Cycle

Baseline 9216 (13.6ms) 11592 (17.4ms) 6727 (10.1ms) 27535 (41.0ms)

64 Elements +Inst. Mapping 2644 (3.9ms) 1825 (2.6ms) 1848 (2.7ms) 6317 (9.6ms)
+Padding 258 (0.4ms) 173 (0.3ms) 838 (1.3ms) 1269 (2.4ms)
Baseline 21933 (32.6ms) 11592 (17.3ms) 6727 (10.1ms) 40252 (59.8ms)

256 Elements +Inst. Mapping 6474 (9.6ms) 1920 (2.7ms) 1885 (2.7ms) 10279 (15.5ms)
+Padding 622 (0.9ms) 173 (0.3ms) 840 (1.2ms) 1635 (2.9ms)
Baseline 76845 (114.7ms) 11592 (17.4ms) 6727 (10.0ms) 95164 (142.0ms)

1024 Elements +Inst. Mapping 24479 (36.2ms) 1944 (2.8ms) 1895 (2.7ms) 28318 (42.2ms)
+Padding 2335 (3.5ms) 173 (0.3ms) 841 (1.2ms) 3349 (5.5ms)

Table 2: Number of AND gates and running time, per cycle, for computing
set-intersection size. Sets of 32-bit integers with different sizes are used.

Binary Search

Size of the array 210 22 214 216 218 920

Baseline System 150 180 210 230 260 290

+Inst. Mapping 11 13 15 17 19 21
Table 3: Number of memory accesses for binary search with different length of
arrays.

e—@ (Our emulator with Circuit
¥Y—V¥ Our emulator with trivial ORAM

N
()
I

B8 [inear scan
A—A ObliVM

9]
o
T

Time (Seconds)
[\
S

o
S
I

10 11 12 13 14 15 16 17 18 19 20
log(Size of Array)

Comparing the performance of secure binary search. One party holds an
array of 32-bit integers, while the other holds a value to search for.

Decision Trees

Size of Decision Tree 128 512 2«48 B192 32TER 65336 131072
Mumber of Integers in Dats bank 316 1084 4136 16444 63596 131132 262204
ORAM strategy Trivial Trivial Trivial Trivial Circuit Cirenit Circuit

#Mem access w/o optimization 100 120 150 180 210 220 240
#Mem access w/ optimization 21 26 32 39 45 47 al
Total Time spent in Mem access 0.1s 052 2465 13.0s 42.Ts 5285 61.7s

Table 6: Memory accesses for decision-tree evaluation.

Size of Memory Instruction ALU Number of Total Total Time for Circuit-

the Tree Access Fetch Computation Cycles Time based Approach
2048 10979 (17.3ms) 137 (0.2ms) 587 (1ms) 150 3.3s 2.1s
8192 50225 (72ms) 139 (0.2ms) 591 (1ms) 180 13.8s 10.8s
32768 89961 (203ms) 140 (0.2ms) 595 (1ms) 210 438s Hd.1s
65536 82307 (240ms) 141 (0.2ms) 597 (1ms) 220 53.9s 119.8s
131072 93616 (257ms) 141 (0.2ms) 598 (1ms) 240 6288 264.2s

Table 5: Number of AND gates and time for different components per cycle and
total running time, for evaluating binary decision trees of different sizes.

A True Universal Circuit

One more benefit of the general approach:
We have a true universal circuit!

Compile the private input function to MIPS,
Supply a function pointer as input to the emulator.

Our optimizations no longer apply: the analysis leaks
information.

Thanks!

