
Secure Computation of MIPS
Machine Code

Gordon, Katz, McIntosh, Wang

Efficiency vs. Generality

2

generality efficiency

Domain specific languages
that approximate certain high

level languages. Constructions tailored
towards particular

applications.
Machine code / legacy code

Legacy Code

Moving to the RAM model offers the possibility
of securely emulating real architectures.

In theory, we can support “real” languages, their
existing libraries, and existing compilers.

What would this take in practice?

Ideal world: the programmer has never heard the
words “secure computation”.

Oblivious RAM [GO96,…]

(v1, d1), (v2, d2) …. , (vn, dn)

4

(r, v5), (r, v2), (w, v2 ,d1) …. , (w, v7, d2)

client server

access pattern 1:

(r, v1), (r, v1), (r, v1) …. , (r, v1)access pattern 2:

ANY 2 access patterns are indistinguishable

ORAM

ORAM in secure computation

x yF(x,y)

Who should hold the ORAM?
Recall, the client fetches items from the server.

Alice shouldn’t see Bob’s items, and Bob Shouldn’t see Alice’s.

ORAM

ORAM in Secure Computation

x yF(x,y)

But even if Alice sees which of her own items are fetched
she learns something about y.

(Consider a binary search for y among the items in X)

ORAM

Oblivious RAM (abstraction)

ORAM
(READ)

V

v(1), … ,v(logn)

V

D

ORAM
v(1)

state(0)

state(1)

ORAM
v(2)

state(1)

state(2)

ORAM
v(logn)

state(logn-1)

state(logn)

…

1 of the log n will
match, output D

CCS 2012
v1

D1

ORAM
v(1)

state1
(0)

state2
(0)

state1
(1)

ORAM
v(2)

state1
(2)

ORAM
v(logn)

state1
(logn)

…
v2

state1
(1)

state2
(1)

state1
(log n-1)

state2
(log n-1)

state2
(1)

state2
(2)

state2
(logn)

D2

“secret shares”
v1 v2 = v

state1 state2 = state⊕

⊕
Y
A
O

Y
A
O

Y
A
O

CCS 2012

RAM
PROGRAM

(BINARY SEARCH)

(state1
(0), inst1)

(state2
(0), inst2)

(state1
(log n), D1)

(state2
(log n), D2)

inst1
(0)

ORAM
v(1)

state1
(0)

state2
(0)

state1
(1)

ORAM
v(2)

state1
(2)

ORAM
v(logn)

state1
(logn)

…
inst2

(0)

state1
(1)

state2
(1)

state1
(log n-1)

state2
(log n-1)

state2
(1)

state2
(2)

state2
(logn)

Y
A
O

Y
A
O

Y
A
O

Y
A
O

D1

D2

Current Work (DARPA: PROCEED)

CPU
MIPS ARCHITECTURE

new 32-registers
new progCounter

new 32-registers
instruction
progCounter

Y
A
O

INSTRUCTION
FETCH

LOAD/STORE
WORD

progCounter

Y
A
O

YAO

new instruction
32-registers

ObliVM

Current Work

CPU
MIPS ARCHITECTURE

new 32-registers
new progCounter

new 32-registers
instruction
progCounter

Y
A
O

INSTRUCTION
FETCH

LOAD/STORE
WORD

progCounter

Y
A
O

YAO

new instruction
32-registers

Current Work

CPU
MIPS ARCHITECTURE

new 32-registers
new progCounter

new 32-registers
instruction
progCounter

Y
A
O

Why MIPS?

• Fixed register space = fixed circuit.

• With approximately 15 instructions, we
can compute:
Djikstra, longest common sub-string, set-
intersection, stable marriage, binary
search, decision trees…

• Easy to implement!

• 15 instructions = small circuit.

• We first proposed LLVM, but
instructions in LLVM are polymorphic
objects.

On the other hand:

• ARM or x86 would give bigger circuits,
but smaller programs. Ultimately, I don’t
know which is best.

Current Work

CPU
MIPS ARCHITECTURE

new 32-registers
new progCounter

new 32-registers
instruction
progCounter

Y
A
O

INSTRUCTION
FETCH

LOAD/STORE
WORD

progCounter

Y
A
O

YAO

new instruction
32-registers

Component Run-Times

ALU

 15 instructions  7K AND gates

Memory

Fetch from 1024 32-bit words  43K AND gates

Improvement #1: Instruction Mapping

Divide all instructions into separate “banks”

Banki contains instructions that could be
executed in the ith cycle.

Instruction Mapping

If (x > 5)
instr1
instr2

else
instr3
instr4

If x is tainted:
instr1 and instr3 must go
in the same ORAM bank

and
instr2 and instr4 must go
in the same ORAM bank

for (i = 1 to x)
instr1
instr2

end for
instr3
instr4
instr5

t = 1: instr1

t = 2: instr2

t = 3: instr1 or instr3

t = 4: instr2 or instr4

t = 5: instr1 or instr3 or intsr5

loop size t, program length n:
n/t banks, each of size t.

Instruction Mapping

CPU
MIPS ARCHITECTURE

Y
A
O

INSTRUCTION
FETCH

LOAD/STORE
WORD

Y
A
O

YAO

skip this on
MANY steps!

Reduce the
number of
instructions!

Wade through
fewer
instructions!

CPU
MIPS ARCHITECTURE

Y
A
O

Reduce the
number of
instructions!

Instruction Mapping

Set Intersection:
Reduces the average ALU size from

6727 to 1848 AND gates. (3.5X)

INSTRUCTION
FETCHY

A
O

Wade through
fewer
instructions!

Instruction Mapping

Set Intersection:
The full program has about 150 instructions.
The largest instruction bank after mapping has 31 instructions.
More than half the instruction banks have fewer than 20 instructions.

LOAD/STORE
WORD

YAO

skip this on
MOST steps! 

Instruction Mapping

Unfortunately, even after instruction mapping,
load/store operations still might occur

in almost every time step.

Improvement #2: padding

for (i = 1 to x)
If (x > 5)

instr1
instr2

else
instr3
instr4
instr5

If two branches are relatively
prime, one of length k1, the other
k2, then in less than k1k2 time-steps,
we will cover the entire loop.

By padding branches such that the
lengths are relatively composite, we
can greatly reduce the number of
instructions per bank:

for set intersection, we go from 
40 down to 4.

LOAD/STORE
WORD

YAO

skip this on
MOST steps! 

Padding

We padded 2 of 3 branches that appear in the
main loop using a total of 6 NOP instructions.

Before padding we found that a load/store operation
might be executed in almost every time step.

After padding, we find that for only 1/10 of all
time steps require a load/store operation.

Set Intersection

Run-time decomposition for computing set-
intersection size when each party's input
consists of 64 32-bit integers.

Run-time decomposition for computing set-
intersection size when each party's input
consists of 1024 32-bit integers.

Set Intersection

Binary Search

Comparing the performance of secure binary search. One party holds an
array of 32-bit integers, while the other holds a value to search for.

Decision Trees

A True Universal Circuit

One more benefit of the general approach:
We have a true universal circuit!

1. Compile the private input function to MIPS,

2. Supply a function pointer as input to the emulator.

3. Our optimizations no longer apply: the analysis leaks
information.

Thanks!

