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Predictive ModelPredictive Model

• Given samples (x1, y1), (x2, y2), …, (xn, yn) 
o xi∈ℝd, yi∈ℝ

• Learn a function f such that f(xi) = yi
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Linear RegressionLinear Regression

• Given samples (x1, y1), (x2, y2), …, (xn, yn) 
o xi∈ℝd, yi∈ℝ

• Learn a function f such that f(xi) = yi
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f is well approximated 
by a linear map

yi ≈ 𝜃T xi
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Secure ComputationSecure Computation

• Shared database - (x1, y1), (x2, y2), …, (xn, yn) do not belong to 
the same party

• Compute 𝜃 securely (yi ≈ 𝜃T xi)
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Horizontally Partitioned 
Database

Horizontally Partitioned 
Database

• Different rows belong to different parties
o E.g., each patient has their own information
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Vertically Partitioned 
Database

Vertically Partitioned 
Database

• Different columns belong to different parties
o E.g., different specialized hospitals have different parts of the 

information for all patients
6/18/16
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Ridge RegressionRidge Regression
• Computing linear model on inputs (x1, y1),…, (xn, yn) 

o xi∈ℝd, yi∈ℝ

• Optimization formulation

• Linear System Formulation
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ContributionsContributions
• Secure computation for ridge regression for vertically 

partitioned database
o Two phase protocol:

• Phase1 – compute 𝐴 = $
%

XT X + 𝛌𝐼 𝑏 = XT Y
o Output is additively shared between two parties

• Phase2 – solve 𝐴𝜃 = 𝑏 where A and b are shared between two 
parties

• Two party and multiparty protocol for Phase1
o Two party inner product computation

• Three algorithms for Phase2: 
o Cholesky, LDLT, Conjugate Gradient Descent (CGD)

• Implementation and evaluation
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Phase 1Phase 1
• Compute 𝐴 = $

%XT X + 𝛌𝐼 𝑏 = XT Y
• The output is additively shared between two parties

• Each entry of A is a dot product of the vectors held by two 
different parties 
• In the multi-party case too

• Two party computation of dot product
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Phase 1Phase 1
• Architecture – inspired by [NWIJBT13]

• Two additional semi-honest, non-colluding parties:
o Crypto Service Provider (CSP) – generates parameters
o Evaluator – helps for the evaluation of the protocols, has no inputs

• Our setting
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Phase 1Phase 1
Two Parties Many Parties
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a b

x, r y, z = 𝒙, 𝒚 	- r

b’ = b - y

a’ = a + x, a’’ = 𝒂, 𝒃′ - r - rA

rB = 𝒂′, 𝒚 	+ a’’- zrA

Dot product
protocol

Garb Circuit

OT OT
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Phase 2Phase 2
• Two party protocol

o Inputs: additive shares of matrix A and vector b
o Outputs: additive shares of 𝜽 such that

𝑨𝜽 = 𝒃

• Gabled circuits computation
• Solutions algorithms

o Two exact algorithms: Cholesky, LDLT
o One approximation algorithm: Conjugate Gradient 

Descent (CGD)

• [NWIJBT13] implements Cholesky
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CholeskyCholesky
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• Cholesky decomposition for 
positive definite matrices
o A = LLT

o L: d×d lower triangular matrix

• Idea: solve LLT𝜽 = 𝒃
o L𝜽′ = 𝒃
o LT𝜽 = 𝜽′

• Complexity: O(d3) floating 
point operations

• Two properties:
o Data-agnostic – no pivoting 
o Numerically robust – suitable 

for finite precision 
implementations
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LDLTLDLT
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• Variant of Cholesky
decomposition
o A = LDLT

o L – lower triangular
o D – diagonal, non-negative 

entries

• Idea: solve LDLT𝜽 = 𝒃
o L𝜽” = 𝒃
o D𝜽′ = 𝜽”
o LT𝜽 = 𝜽′

• Complexity: O(d3) 
o No square root
o Additional substitution phase

• Same properties
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CGDCGD
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• Approximate solution
• Solving 𝐴𝜃 = 𝑏 by solving 

the optimization
𝐚𝐫𝐠𝐦𝐢𝐧𝜽	||𝑨𝜽 − 𝒃||𝟐

• Iterative solutions 
approach based on 
conjugate gradients

• Complexity
o Until convergence O(d3)
o Early termination O(d2) 

per iteration
• Error: ε after 𝑶( 𝝹 𝐥𝐨𝐠 1/ε)

iterations
o 𝞳 - condition number
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Fixed-Point ArithmeticFixed-Point Arithmetic

• 𝜙F 𝑟 = [𝑟/𝛿];  𝜙JF 𝑧 = 𝑧𝛿, |𝑟	 −	𝜙JF 𝜙F 𝑟 | ≤ 𝛿
• 𝜑 𝑧 = 𝑧 if z ≥ 0	; 𝜑 𝑧 = 𝑧 + 𝑞 if z < 0	
• 𝜑T 𝑢 = 𝑢 if 0 ≤ u ≤ q/2; 𝜑T 𝑢 = 𝑢 − 𝑞 if 𝑞/2 < u ≤ q− 1

• Phase1: n-dim vectors with entries of size R
o Error: n(2R𝛿+ 𝛿2)
o Normalize R≤ 𝟏/ 𝒏⇒ error εwith 𝛿= ε /2 𝑛 and q = 8n/ ε2

• O(log(n/ ε)) bit representation

• Phase2 – experiments
o q = 232 (4 bits integer part, 1 bit sign) ⇒ 𝛿 = 2-27

o q = 264 (4 bits integer part, 1 bit sign) ⇒ 𝛿 = 2-59
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tocols. The encoding and decoding maps that we introduce
next are summarized in the following diagram:

R
��

�
�̃�

Z
'q

�
'̃q

Z
q

The e↵ect of the precision when encoding real numbers
using integers is controlled by a parameter � > 0 which is
used to define an mapping from reals to integers given by
�
�

(r) = [r/�]. Here [·] returns the rounding of a real number
to the closest integer, with ties favoring the number closest
to 0. For example, for a given � one can see that � maps the
interval [��/2, �/2] to 0, (�/2, 3�/2] to 1, and [�3�/2,��/2)
to �1. Thus, � can be interpreted as the smallest number
that can be represented by the encoding �, e.g. if � = 10��

for some integer � then �
�

(r) yields a representation of r
truncated to the �th decimal. When integers are repre-
sented in binary it is convenient to take � = 2��. Using the
precision parameter � we also define a decoding of integers
to real numbers acting as an approximate inverse of the en-
coding �

�

. This decoding is given by �̃
�

(z) = z�, and it is
easy to see that it satisfied |r � �̃

�

(�
�

(r))|  � for any real
number r.

The most important property of a fixed-point encoding
is how well the ring operations on Z operating on encoded
reals can approximate the corresponding operations in real
arithmetic. Addition is simple since using linearity of the
decoding map it easy to show that for any reals r, r0 one
has |(r + r0) � �̃

�

(�
�

(r) + �
�

(r0))|  2�. Multiplications
are slightly more involved because in general 2� decimals
are required to represent exactly the fractional part of the
result of multiplying two numbers with � decimals. Tak-
ing this into account, one can show the following bound on
the error introduced by performing multiplications in fixed-
point: |(rr0) � �̃

�

2(�
�

(r)�
�

(r0))|  (|r| + |r0|)� + �2. Note
this bound depends on the magnitude of the numbers being
multiplied and the decoding is done using precision �2.

When using �
�

to encode reals bounded by M , i.e. |r| 
M , we obtain integers in the finite range [�M/�]  �

�

(r) 
[M/�]. There are at most K = 2dM/�e + 1 integers in this
range, and therefore it is possible to map them injectively
into the ring Z

q

of integers modulo q with q > K using the
map '

q

(z) = z mod q. For integers in the range �q/2 
z  q/2 this map is given by '

q

(z) = z if z � 0 and '
q

(z) =
q+z for z < 0. Thus it makes sense to define a decoding map
'̃

q

: Z
q

! Z with '̃
q

(u) = u if 0  u  q/2 and '̃
q

(u) = u�q
for q/2 < u  q � 1. Then we have '̃

q

('
q

(z)) = z for any
�q/2  z  q/2.

Although '
q

is a ring homomorphism translating opera-
tions in Z into operations in Z

q

, decoding from Z
q

to Z after
performing ring operations on encoded integers will not in
general yield the desired result due to the occurrence of over-
flows. To avoid such overflows one must check that the result
fall in the interval where the coding '

q

is the inverse of '̃
q

:
suppose z, z0 are integers such that |z|, |z0|  q/2, then

1. if |z+ z0|  q/2, then z+ z0 = '̃
q

('
q

(z)+'
q

(z0)), and

2. if |zz0|  q/2, then zz0 = '̃
q

('
q

(z)'
q

(z0)).

4. TWO PARTY CASE

In this section we consider the two party setting for the
problem where the database is vertically partitioned between

two parties A and B and at the end of the protocol the
parties hold shares of the model constructed by solving ridge
regression on the data. We will use this case to introduce
important observation that we use later in our protocol for
an arbirary number of parties.
As explained above, our problem reduces to securely solv-

ing a system of linear equations A✓ = b where A = 1
n

X>X+

�I and b = 1
n

X>Y , where X 2 Rn⇥d is a matrix with n rows
corresponding to the di↵erent vectors xi, and Y 2 Rn for a
vectors with n entries corresponding to the labels yi.
Note that in most applications of data analysis one can

assume n � d. Hence, it is critical for scalability purposes
that the computations that depend on n are very e�cient.
A naive approach to solve the ridge regression problem is

to execute the whole computation using one large garbled
circuit. However, this computation results in a the evalua-
tion of a huge circuit, since only calculating X>X involves
computing inner products over vector of length n.
Instead we take a more careful look at output that the

two parties need to compute. In particular, we can divide
the problem in two well defined phases as mentioned above:

1. At the end of the first phase, the partiesA andB hold a
share of the matrix X>X+�I and the vector X>Y . In
other words, our first phase is a two-party computation
resulting in an additive share of the coe�cients of the
system A✓ = b. Note that this computation has cost
O(nd2).

2. In our second phase, we run a two-party multiparty
computation to solve the shared system obtained in
the previous phase. Note that the input of this phase
has size is of the order of d2, and hence is independent
of the number of records in the database.

A similar partitioning of the problem was used in [34] to
tackle the variant of our problem where the input database
is horizontally partitioned among the parties. Moreover,
solving a linear system of equations is a central problem
in machine learning, and hence our contributions regarding
the second phase of our solution are of independent interest.

4.1 Phase 1: Securely Computing X>X

In this section, we focus of the main task of the first phase
of our protocol: computing shares of X>X. We note that
once this computation is done, obtaining A is easy because
it amounts to adding a publicly known matrix to X>X. In
addition, the computation ofX>Y can be done using exactly
the same protocol.
We start by having a closer look at what needs to be

computed. Recall that X is partitioned vertically among
the two parties A and B and, for simplicity, assume that
each party holds half of the features. More concretely, as
illustrated in Figure 2 Party A holds a matrix XA which
contains half of the features for each record in the database
and party B holds a matrix XB which contains of the other
half of the features for records. Figure 2 shows how the
content of the output matrix depends on the inputs of the
two parties. We observe that the upper left part of the
matrix M = X>X depends only on the input of party A and
the lower right part depends only on the input of party B. In
that case, the corresponding entries of M can be computed
locally by A, while B simply has to set her shares of those
entries to 0. On the other hand, for entries M

ij

of M such



Implementation and 
Evaluation

Implementation and 
Evaluation

• Obliv-C
o Most recent optimizations: Free XOR, Garbled Row Reduction, 

Fixed Key Block Ciphers, Half Gates
• Fixed point arithmetic on top of Obliv-C

o Algorithms: multiplication (Karatsuba-Comba), division 
(Knuth’s algorithm D), square root(Newton’s method)

o 32 bits: 4 bits (integral part) + 28 bit (fractional part)
• Synthetic datasets (vs real datasets)

o Generated with correct 𝛌 parameter – sample from d-
dimensional Gaussian distribution

o Tuning 𝛌 privately is hard question – incorrect 𝛌 makes the 
optimization too easy or too difficult 

• Amazon EC2 C4 (15GB RAM, 8 CPU cores)
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Database partitioned 
equally among parties 

(     n ,     d)
column1   ( 2000,   20)
column2   (10000,100)
column3   (50000,500)

Figure 6: Normalized computation time for di↵erent num-
bers of parties and values of d. It shows that for all values
of d, with increasing number of parties, the amount of work
for the TI increases, while the average computation time for
the parties decreases.

Number of parties

d 2 3 4

20 0.17 0.033 0.22 0.032 0.26 0.030
100 19 1.7 26 1.6 29 1.4
500 109 146 149 125 166 104

Table 1: Amount of computation time taken by the Trusted
Initializer (left) the parties (left, averaged) for di↵erent val-
ues of d and n = 100 · d.

sume potentially colluding parties for the remainder of the
experiments.

The first phase (Figure 3) was executed with di↵erent
numbers of parties, with the inputs shared equally among
them. For each party, as well as the TI, the total computa-
tion time was recorded.

The results are depicted in Figure 6, showing normalized
computation times for di↵erent input dimensions d. With
increasing number of parties, the amount of work done by
the TI increases. At the same time, the average computation
time taken by the parties decreases. The absolute times are
listed in Table 1. It shows that even for high-dimensional
data (d = 500), secure computation of the inner product
takes less than three minutes.

8. RELATED WORK
Cryptographic solutions for the secure computation of any

functionality have been known for than thirty years [39, 16,
4]. Yet, implementations of MPC protocols and evaluations
of their practical e�ciency have become well established part
of the research agenda in this area only in the last several
years [29, 19, 20, 17, 3, 42, 34, 5, 41, 23, 28, 38, 33, 46].
Popular applications used for the empirical evaluation of im-
plemented systems include graph algorithms [17, 5, 23, 28,
33, 46], data structure algorithms [23, 42, 28], string match-
ing and distance algorithms [19, 20, 38] and AES [19, 20, 3,
38]. Questions of privacy preserving data mining and private
computation of machine learning algorithms including linear
regression have been considered in several works [26, 12, 22,
14, 37, 40] which o↵er theoretical protocols without imple-

mentation and practical evaluations of their e�ciency. The
work of Hall et al. [18] proposes a protocol for computing
linear regression on vertically partitioned database based on
homomorphic encryption and runs a simulation for the pro-
tocol, which is several orders of magnitude slower than our
results (for database of size n ⇡ 50000 with d ⇡ 20 features
their protocol runs for two days).
The most relevant previous work to our paper is the work

of Nikolaenko et al. [34] which also considers the question of
secure computation for ridge regression but in a di↵erent set-
ting. It addresses the setting of a horizontally partitioned
database, where each record is contributed by a di↵erent
user. They divide their computation protocol in the same
two phases that we use. The horizontal partitioning of the
database a↵ects the first phase of the computation. In par-
ticular in this case each entry of the covariance matrix M
can be expressed as a sum of terms, each of which can be
computed by a single party. This enables the authors of [34]
to use additively homomorphic encryption for the inputs of
di↵erent users and compute M . In our setting of vertically
partitioned data the entries of A require multiplication of in-
puts coming from di↵erent parties. Non-interactivity for the
first phase was important in the case of [34], since this does
not require users that contribute records in the database to
be online and participate in the protocol. In our setting
the potential input parties that hold vertical partitions of
the database will be several companies/organizations which
come together to build a model over their joint data. Inter-
activity in this scenario is not of vital importance and we
choose to construct interactive protocols that achieve better
computation e�ciency avoiding expensive homomorphic en-
cryption, which in our case will have to handle both addition
and a single multiplication.
For the second phase of the secure ridge regression proto-

col, Nikolaenko et al. [34] implement Cholesky’s algorithm
for solving systems of linear equations. We implemented
three di↵erent techniques for solving systems of linear equa-
tions: Cholesky, LDLT and CGD, and showed that iterative
methods like the latter enable higher dimensionality at the
cost of a resonable accuracy loss. In fact, phase II of our
protocol coincides with the one in [34], and hence our con-
tribution is also valuable in the setting considered there.

9. DISCUSSION
The problem of securely running machine learning algo-

rithms when the training data is distributed among several
parties is an important milestone for the development of
privacy-preserving data analysis tools. In this paper we fo-
cus on a linear regression task widely used in practical ap-
plications. We showed how the setting in which the train-
ing database is vertically partitioned gives rise to technical
problems di↵erent from the ones encountered in the hori-
zontally partitioned setup previously considered in the liter-
ature. We present a hybrid secure multi-party computation
protocol for solving this problem that involves an inner prod-
uct protocol and a linear system solving protocol. By using
tools based on shared randomness and garbled circuits we
obtain a highly scalable solution that can e�ciently solve
linear regression problems on large-scale datasets. Our ex-
periments show that it is possible to apply these ideas to
high-dimensional problems using an implementation of con-
jugate gradient descent with fixed-point arithmetic and early
stopping. In future work we plan to extend our protocols to
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ConclusionsConclusions
• Machine learning algorithms – target for MPC
• Ridge regression

o Vertically partitioned datasets

• Tailored protocol for Phase1
• Two party computation for solving systems of linear 

equations for Phase2
o Exact (Cholesky, LDLT) and approximation (CGD) 

algorithms
o Approximation: more efficient with sufficient precision

• Next steps – classification (logistic regression)
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Thank You!


