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1 Introduction and Definitions

The population of a biological species depends on many factors, such as birth and death rates,
immigration and emigration rates, competition, harvesting, and environmental influences. The
simplest types of populations to study are those with non-overlapping generations. In a population
with non-overlapping generations, one generation dies out before the next generation is born. This
is the case for some species of fish and for seasonally breeding insects.

A basic population model for a population with non-overlapping generations is an equation
that attempts to describe how the population in one generation depends on the population in the
previous generation. Say x(n+1) is the population in generation n+1, and x(n) is the population
in generation n. A basic population model is an equation of the form x(n + 1) = f(x(n)) for some
function f . We call f a generating function. Different choices of generating functions produce
different population models. The choice of generating function depends on the assumptions that
are made about how a population grows. In this module we will consider four different population
models, i.e., four different generating functions.

In order to simplify the notation, we will write xn for x(n). If we have a basic population
model xn+1 = f(xn), with initial population x0, then x1 = f(x0) is the population in generation 1,
x2 = f(x1) = f(f(x0)) = f2(x0) is the population in generation 2, and, in general, xn = fn(x0) is
the population in generation n. Here fn represents the composition or iteration of f with itself n
times. The sequence of iterations {x0, x1, x2, x3, . . .} is called the orbit of x0 under f .

Example: Suppose f(x) = x2 and x0 = 1/2. Then

x1 = (x0)2 = (1/2)2 = 1/4
x2 = (x1)2 = (1/4)2 = 1/16
x3 = (x2)2 = (1/16)2 = 1/256

...

and so forth, and the orbit of x0 = 1/2 is {1/2, 1/4, 1/16, 1/256, . . .}. We can see that as n increases,
the values of xn are getting closer and closer to 0. Similar limiting behavior occurs for any initial
value x0 with |x0| < 1. The values of xn would increase without bound (as n increases) if x0 > 1.

Exercise 1.1: What happens if x0 < −1?

Since f(0) = 0, the orbit of x0 = 0 is {0, 0, 0, . . .}. That is, the orbit of x0 = 0 remains fixed
at 0. We say that x0 is a fixed point of a generating function f if f(x0) = x0. In order to find the
fixed points of f(x) = x2 we solve f(x) = x. Solving x2 = x, we find f has two fixed points: x = 0
and x = 1.

In some of the exercises in this module you will be asked to determine if population values
over time move toward a fixed point or away from a fixed point. In our example, we’ve seen that
for any initial value x0 near the fixed point 0, the values of xn approach the fixed point 0 as n
increases. In this case, we say that 0 is an attracting fixed point of f . Similarly, for any initial
population value near (but not equal to) the fixed point 1, the values of xn either approach 0 (for
x0 = 0.9, for instance) or grow without bound (for x0 = 1.1, for instance) as n increases. In either
case, the values of xn move away from 1. Therefore we say that 1 is a repelling fixed point of f .
(It’s worth noting that we cannot classify every fixed point of every generating function as either
attracting or repelling.)
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One of the first population models was introduced by Thomas Malthus in 1798 to describe
the population of Great Britain. The Malthus model is based on the simplifying assumption that
the population at time n + 1 is proportional to the population at time n. For example, suppose
that a population at time n is given by xn and that in any given time period, the number of births
is equal to 20% of the population, and the number of deaths is equal to 13% of the population.
The net change in population between times n and n + 1 would be the difference between the
number of births and the number of deaths during that time period. Mathematically, we have
xn+1−xn = 0.20xn−0.13xn, or simply xn+1 = 1.07xn. In general, we can write the Malthus model
as

xn+1 = kxn (1)

for some constant k. We can also write the Malthus model as xn+1 = f(xn), where f(x) = kx is
the generating function. The constant k will always be 1 + birth rate − death rate.

Exercise 1.2: What can you say about the birth rate and death rate for the population if k > 1?
What implication would that have for the population?

Exercise 1.3: What can you say about the birth rate and death rate for the population if k = 1?
And if 0 < k < 1? What implications would that have for the population?

You can verify your answers above with the following observation. If x0 is the initial popu-
lation, then

x1 = kx0,

x2 = kx1 = k2x0,

and, in general, xn = knx0.

We can see from this equation, for example, that if k > 1, then kn increases without bound
as n increases. Over time the population would increase without bound.

The Malthus model assumes that a population is always growing at a rate of k. This is a
reasonable assumption for short-term growth of small populations with vast resources, such as the
first bacteria in a bacteria colony. However, the Malthus model is not reasonable for describing
long-term population growth. For instance, if k = 1.07 and x0 = 1, then x325 is over one billion!

No generating function can possibly capture all the factors affecting a population’s growth.
A mathematical population model attempts to capture some of the main factors that govern a
population. In the following sections we will consider three population models (logistic, Ricker,
and Beverton-Holt) which, unlike the Malthus model, assume that the rate at which a population
grows decreases as the population increases.
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2 The Logistic Model

2.1 Introduction

The maximum population that an environment can sustain is called the carrying capacity of the
environment. The simplest population model which takes into account the carrying capacity is the
logistic model. We will denote the carrying capacity for a population by L, and the population in
generation n by yn.

The logistic model is given by the difference equation

yn+1 = ryn

(
1− yn

L

)
, (2)

where L is the carrying capacity and r is a constant combining the birth and death rates. We will
assume r > 0.

Note the following two features of the logistic model. First, if the current population yn is
relatively small compared to the carrying capacity L, so that (1− yn

L ) is close to 1, the environment
contains an abundance of resources for the current population. As a result, the population behaves
in the short-term as though its growth were unrestricted. That is, when yn is much smaller than
L, the logistic model is approximately the Malthus model because yn+1 is approximately ryn. The
second feature to note is that (1− yn

L ) approaches 0 as yn approaches L. So the growth rate of the
population slows down as the population nears the carrying capacity L.

Though the logistic model makes unrealistic predictions (such as negative populations if yn >
L), it is useful for describing how a population would grow in the absence of outside intervention.
The model can be modified to incorporate intervening factors such as harvesting or migration (see
Exercise 2.4). From a mathematical perspective, the logistic model is interesting to study. Though
it seems very simple, it displays rather complicated behaviors. (For a classic paper with examples
of simple models that have very complex behaviors see [8].)

If we let xn = yn

L , it can be shown that the equation

xn+1 = rxn (1− xn) (3)

is equivalent to Equation (2). Note that in Equation (3), the population values are scaled as a
fraction of the carrying capacity, so that xn will take values between zero and one. In making this
adjustment, the “1” now represents carrying capacity as 100%, and the factor (1− x) tells us how
close the population is to the carrying capacity as x is a fraction of the carrying capacity. For the
remainder of this module, we will refer to Equation (3) as the logistic model. We can also write the
logistic model as xn+1 = f(xn), where f(x) = rx(1− x) is the generating function for the logistic
model.

Exercise 2.1: Show that if xn = yn

L then Equation (2) can be rewritten as Equation (3).

Exercise 2.2: Find the fixed points of the logistic model by solving the equation rx(1 − x) = x
for x.

Exercise 2.3: Consider xn+1 = f(xn) where f(x) = rx(1− x).

(a) Suppose xn > 0. Show that the logistic model predicts xn+1 < 0 if and only if xn > 1.

(b) What is the maximum value of f , and where does it occur?

(c) Show that xn+1 > 1 is possible only if r > 4.

(d) What are conditions on r and x0 that guarantee xn > 0 for n = 1, 2, 3, . . .?

7



2.2 Iterations Using Excel

In this section we give steps to easily compute iterations of a function using Excel. Consider the
logistic model xn+1 = rxn(1− xn).

• We will use the A column to keep track of the time (or generation). Enter 0 for the initial
time in cell A1. In A2 enter =A1+1. Next, drag the fill handle in A2 (the small box in
the lower right corner of the cell) downward until, say, A20. This will copy and update the
formula in A2 into the cells below. (Each time 1 will be added to the entry in the preceding
cell.)

• We will keep track of the parameter r in C1. For now let’s enter 2 in C1.

• Enter the initial population x0 in B1. For now let’s enter 0.1 in B1.

• In the B column we will calculate the iterations of the generating function f(x) = rx(1− x)
by entering =$C$1*B1*(1-B1) in B2. (The $ symbol in the reference to C1 signifies that
the reference is absolute and will not be updated as we iterate. The references to B1 are
relative and will change in subsequent formulas.) Now drag the fill handle in B2 downward
until B20.

• Every time you enter a new value for x0, the initial population, in B1 or change the parameter
r in C1, your iterations will be updated. (See Figure 1.)

A B C
0 0.1 2
1 0.18
2 0.2952
3 0.416114
4 0.485926
5 0.499604
6 0.5
7 0.5
8 0.5
9 0.5

10 0.5

Figure 1: Excel iterations of the logistic model with r = 2 and x0 = 0.1.
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Figure 2: Excel plot of iterations with r = 2 and x0 = 0.1.

In order to graph the data points as in Figure 2, select Chart under the Insert menu. Then
select XY (Scatter) and choose the sub-chart “Scatter with data points connected by lines”. After
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clicking Next, a Data Range box will appear. Click on the small square to the right of this box,
and then highlight the data points in columns A and B that are to be graphed. Finally, follow the
steps in the Chart Wizard to label your chart and the axes, and choose the scale of your graph.
When you select Finish, the data will be displayed on a chart as shown in Figure 2. Your graph
will be automatically updated every time you enter a new value of r in C1 or a new value of x0,
the initial population, in B1.

2.3 Iteration Exercises

In the exercises in this section you’ll work with logistic population models for biological populations.
Keep in mind that the predictions the model makes about the size of the population are what we
might expect to observe if outside conditions remain approximately the same.

Exercise 2.4: The wheat bulb fly is a common pest to wheat crops. Wheat bulb flies have one
brood per year and have non-overlapping generations. Each fall the flies lay their eggs. The eggs
hatch in mid-winter, and the adult flies are present from mid-June through September. In [9] W.
Morris fit logistic models to previously published life-table data of eight generations of the wheat
bulb fly from a wheat growing area of England. It was estimated that the carrying capacity for
wheat bulb flies is 0.72× 106 flies per ha (hectare) and that r = 1.5.

Suppose that there are 0.06×106 flies per ha. Because we have scaled the population values to
be a fraction of the carrying capacity, to find x0 for our model we must divide the initial population
0.06× 106 by 0.72× 106 to get the fraction x0 = 0.06/0.72 = 0.0833.

(a) Find the first 20 iterations of this model and show that the model predicts that the population
stabilizes at 0.333 of the carrying capacity. What is the actual number of wheat bulb flies
that this fraction represents?

(b) Suppose 0.5× 105 flies per ha migrated to this region each year. How would you modify the
model to take into account this migration?

Exercise 2.5: Understanding how tumors grow is an important part of understanding how to
treat cancer. In [5], Cross and Cotton use a logistic model xn+1 = rxn(1 − xn) to predict tumor
growth. Assume that the tumor cells are in a container in a laboratory and that the container can
support a maximum number of cells, which is the carrying capacity of the container. Instead of
specifying a container carrying capacity of, say, 2 million cells, and also the actual number of cells,
we instead represent populations as fractions of the carrying capacity. Therefore the population xn

is always between 0 and 1. For each of the following values of r find the first 30 iterations of three
different initial populations between 0 and 1, and plot your results. Based on your results, what
(if anything) does the model predict will happen to the tumor cell population over time?

(a) r = 2.5

(b) r = 3

(c) r = 3.5

Exercise 2.6: Consider a population modeled by the logistic equation xn+1 = 2xn(1− xn).

(a) Find the fixed points.
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(b) For each value of x0 given below, determine the corresponding values of xn for times n =
1, 2, 3, 4, 5. Describe the patterns you observe and interpret them in terms of the population.

i. x0 = 0.1

ii. x0 = 1.1

iii. x0 = 0.6

iv. x0 = 0.5

(c) Based on your calculations in part (b), determine whether each fixed point is attracting or
repelling.

2.4 Cobweb Diagrams

A cobweb diagram is a graphical representation of the orbit of a point x0 under a generating
function f(x) that does not require any computations. To start, we graph both y = f(x) and the
line y = x. Note that the x−coordinates of the intersection points are precisely the fixed points of
f since they are the solutions to the equation f(x) = x.

The coordinates of any point on the graph of the generating function f(x) represent successive
population values. That is, a point on the graph of f(x) has coordinates (xn, xn+1). Also note that
a point on the graph of y = x has coordinates (xn, xn). The cobweb diagram is constructed by
alternately drawing a sequence of vertical and horizontal line segments.

Let’s consider the logistic model xn+1 = 2xn(1 − xn) with initial population x0 = 0.2. We
first graph the generating function y = 2x(1 − x) and the line y = x. (The intersection points
occur at x = 0 and x = 0.5, the fixed points of f .) Locate the initial population x0 = 0.2 on the
horizontal axis. Sketch a vertical line segment up to the graph of y = 2x(1− x). The y-coordinate
of this point on the parabola is the value of the population at time 1, or x1. (See Figure 3.)

1

(x0, x1)

0 x0

Figure 3: Starting a cobweb diagram.

From the point (x0, x1) on the parabola, sketch a horizontal line segment over to the line
y = x. The horizontal line segment intersects the line y = x at the point (x1, x1). We repeat
this process of drawing a vertical line segment from (x1, x1) up to the parabola and a horizontal
line segment over to the line y = x. We should now be at the point (x2, x2). (See Figure 4.) In
repeating this process we are graphically iterating x0 under the function f . The result is a diagram
that looks like a cobweb or staircase. We can visualize the orbit {x0, x1, x2, . . .} and its behavior,
in this case increasing toward the fixed point at 0.5, without doing any calculations! (See Figure
5.)

A cobweb diagram provides a way to visualize the long-term behavior of orbits. From the
cobweb diagram of xn+1 = 2xn(1 − xn) we see that the orbit of any point x0 near 0.5 always
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approaches the fixed point at 0.5. This verifies your observation in Exercise 2.6 that 0.5 is an
attracting fixed point. However, the orbit of any point x0 near 0 (but not equal to 0) always goes
away from 0, which verifies that 0 is a repelling fixed point.

(x1, x2)

(x0, x1)

0 1x0

(x1, x1)
(x2, x2)

Figure 4: Two iterations

x00 1

Figure 5: The orbit of x0 approaches the fixed point 0.5.

Exercise 2.7: Draw cobweb diagrams for the Malthus model xn+1 = kxn, for 0 < k < 1, k > 1
and for k = 1. (Here the generating function is the line with slope k that passes through the origin.)
Based on your cobweb diagrams, is the fixed point x = 0 attracting, repelling or neither attracting
nor repelling?

The following theorem is useful for classifying fixed points. It says that the slope of the
generating function at a fixed point determines whether a fixed point is attracting or repelling,
confirming what you observed in the previous exercise with the Malthus model. (The theorem is
proved using the Mean Value Theorem and can be found in [6])

Theorem 2.1 Let f be a continuous function whose derivative is also continuous, and let p be a
fixed point of f . If |f ′(p)| < 1, then p is an attracting fixed point. If |f ′(p)| > 1, then p is a repelling
fixed point.

Exercise 2.8: Consider the logistic model xn+1 = rxn(1 − xn). Use Theorem 2.1 to determine
the values of r for which each fixed point is attracting.

2.5 Cobweb Diagrams using Excel

We next describe how to use Excel to draw a cobweb diagram (as in Figure 6) for the logistic
function xn+1 = rxn(1− xn).
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Figure 6: Cobweb of the logistic model using Excel with r = 3

• Enter the parameter(s) of the model and the initial population in column A. For the logistic
model, the only parameter is r, so enter a value of r in A1, and enter a value of x0 in A2.

• The first point on the cobweb diagram lies on the x−axis at (x0, 0). Enter = $A$2 in B1,
and enter 0 in C1.

• The second point lies on the graph of the generating function at (x0, x1). Enter =B1 in B2
and the formula for the generating function in C2. For the logistic example we would enter
=$A$1*B2*(1-B2) in C2.

• The third point lies on the line y = x at (x1, x1). Enter =C2 in both B3 and C3.

• Highlight the four cells B2, C2, B3 and C3. Drag the fill handle down until you’ve filled
up to B50, C50. The formula pattern from the four cells will be repeated. (Note that the
x−coordinates for the cobweb diagram are in column B, and the y− coordinates are in column
C.)

• Next we generate data points that will be used to sketch the generating function f(x) =
rx(1 − x). The x−coordinates will be in column D. Enter 0 in D1 and =D1+0.1 in D2.
Drag D2 down to D11. To generate the y−coordinates, we need to enter the generating
function in E1. For the logistic example, we enter = $A$1*D1*(1-D1) in E1. Then drag
this down to E11.

• Select Chart under the Insert menu. Next, select XY (Scatter) and choose the sub-chart
“Scatter with data points connected by lines”. After clicking Next, a Data Range box will
appear. Click on the small square to the right of this box, and then highlight the data points
in columns B and C that are to be graphed. Finally, follow the steps in the Chart Wizard
to label your chart and the axes, and choose the scale of your graph. You now should have
a chart with the cobweb, but it still needs the graph of y = x and the generating function.
Right click on the chart and select Source data and then select Add under Series. Click
on the small square to the right of the x-values box and then highlight the data in column
D. Next, click on the small square to the right of the y-values box and highlight the data in
column E. This produces a graph of the generating function. (If you right click on its graph
you can change the sub-type to “scatter with data points connected by smooth lines without
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markers”.) Finally, to sketch the line y = x, repeat these instructions but use the data in
column D for both the x and y values on your graph.

• Now you can change both r and x0 to construct new cobweb graphs.

Exercise 2.9: Find the fixed points of the logistic model xn+1 = 2.5xn(1− xn) and use a cobweb
diagram to classify each fixed point as attracting or repelling.

Exercise 2.10: Let r > 0 and let x0 be in (0, 1). Use cobweb diagrams on xn+1 = rxn(1− xn) to
find

(a) an interval of values of r for which the fixed point x = 0 is attracting.

(b) an interval of values of r for which the second (nonzero)fixed point is attracting.

(c) a value of r for which the long-term behaviors of orbits cannot be determined.

A period k point p is a point such that fk(p) = p but f j(p) 6= p for 0 < j < k. The orbit of
a period k point is called a k-cycle. In Exercise 2.5 you saw that for some choice of r there was an
attracting 2-cycle or 4-cycle. In fact, it can be shown that there are values of r that give cycles of
every period.

Exercise 2.11: Find the values of r for which there will there be a 2-cycle. (Hint: To find
the period 2 points, you need to solve the equation f2(x) = x. Note that f2(x) − x is degree 4
polynomial, and two of its roots will be the fixed points of f . Why? Factoring out the fixed points
of f will simplify your calculations.)

Exercise 2.12: For what values of r will the 2-cycle found in the previous exercise be attracting?
Use Theorem 2.1 and the chain rule.
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3 The Ricker Model

3.1 Introduction

When determining the optimal stocking rates for fisheries, mathematical biologists often use a
mathematical model developed in 1954 by W.E. Ricker to study the salmon population in the
Pacific northwest. In this section, we’ll examine the Ricker model and some of its applications to
mathematical biology.

The Ricker model is given by the difference equation

xn+1 = αe−βxnxn. (4)

The constants α and β are positive and are estimated from population data. We can regard
α as the maximum value of the growth rate, and β as a constant that scales the carrying capacity.
We will see how to estimate these constants in Section 3.2.

Recall that the logistic model can give unrealistic predictions, such as negative populations.
This situation does not occur in the Ricker model because its generating function f(x) = αe−βx is
positive for x > 0. In the exercises you’ll show that, like the logistic function, the the graph of the
Ricker generating function has one-hump. That is, f is increasing for 0 < x < L for some L, and
f is decreasing for x > L.

A population model of the form xn+1 = g(xn)xn is called density dependent because g(x),
the per-capita growth rate, depends on the size of the population. Generally, the greater the
population, the more competition there is for resources, so g will be a decreasing function. Both
the logistic and Ricker models are density dependent. In the logistic model g(x) = r(1− x). In the
Ricker model g(x) = αe−βx. The growth rate in the Malthus model does not depend on the size of
the population; it is always k.

Note, in the logistic model the population values were scaled to take values between 0 and 1.
The population values are not scaled in the Ricker model.

Exercise 3.1: The Ricker model has been used to study the population of the Mexican bean
beetle in the soybean fields of North Carolina. (See [11].) These beetles can have three generations
in one year. Occasionally the beetle causes serious damage to a soybean crop. By fitting the beetle
population data with a Ricker model it was found that, for one variety of soybean, α = 8.86 and
β = 0.148.

(a) Suppose that initially there are 20 beetles per square meter. Determine the first 10 iterations
of the Ricker model. What patterns for the beetle population does this model predict? If
you are using the Excel directions in Section 2.2, you’ll need to keep track of two parameters,
say, α in C1 and β in D1. The A column would be the same as described in Section 2.2, and
B1 would contain the initial population. The generating function in B2 would be written as
= $C$1 ∗Exp(−$D$1 ∗B1) ∗B1.

(b) Suppose that other varieties of soybeans yield different values of α. For each of the following
values of α find the first 30 iterations and plot your results. Based on your results, what (if
anything) does the model predict will happen to the beetle population over time?

i. α = 0.5

ii. α = 1.5

iii. α = 10
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(c) For one of the values of α in part (b) you should have observed the population bouncing back
and forth between two values, i.e., a two-cycle. Experiment with different values of α until
you find a value that gives a 4-cycle.

3.2 Finding a Ricker Model

If we have a data set for a population with non-overlapping generations that we want to fit it with
a Ricker model, we need a method of finding α and β. In this section we give directions for using
Excel to find these constants. We’ll illustrate the method with population data of the pine looper
moth found in [4] that is taken from annual pupal surveys conducted in Great Britain by the British
Forestry service since the 1950s.

The pine looper moth is a threat to many species of conifers. It is found in the western
United States, in western Canada, and in northern Europe. Adult moths emerge in early summer
and live without feeding for 10–14 days. The females lay their eggs on the pine needles. After three
weeks the larvae hatch and feed on new and old pine needles for four to five months. The needles
are often eaten down to the sheath, which can lead to needle loss and the death of trees. Sometime
between mid October and December, the larvae drop to the ground and burrow under the leaves,
needles, and twigs on the forest floor. It overwinters in the pupa stage. In the chart below are the
mean totals of pupal densities in the Cannock Chase forest from 1960 to 1969. The densities are
given per square meter.

Year 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
pupae per sq. m. 15.09 9.15 9.32 1.02 0.35 0.26 1.75 9.09 5.93 1.53

Exercise 3.2: Show that if we divide both sides of the Ricker equation xn+1 = αe−βxnxn by xn

and take the natural log of both sides, we obtain

ln
[
xn+1

xn

]
= ln(α)− βxn (5)

We can treat Equation (5) as a linear regression y = b + mx where y = ln
[

xn+1

xn

]
, b = ln(α),

and m = −β. Here y is the dependent variable and xn the independent variable. Say n = 0
corresponds to 1960. We next compute the y values, which are displayed in the following table.

n xn xn+1 y = ln
[

xn+1

xn

]

0 15.09 9.15 -0.500
1 9.15 9.32 0.018
2 9.32 1.02 −2.212
3 1.02 0.35 −1.070
4 0.35 0.26 −0.297
5 0.26 1.75 1.907
6 1.75 9.09 1.648
7 9.09 5.93 −0.427
8 5.93 1.53 −1.355

To find b and m, enter the data from the xn column in cells A1-A9, and enter the data from
the y column in cells B1-B9. To find m enter = Slope(B1 : B9,A1 : A9) in an empty cell. To
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find b enter = Intercept(B1 : B9,A1 : A9) in another empty cell. Then set β = −m and α = eb.
For this data set, we find that β = 0.111 and α = e0.388 = 1.474. So the Ricker model would be

xn+1 = 1.474e0.111xnxn (6)

Exercise 3.3: Find the first 15 iterations of Equation (6). What does this model predict for the
pine looper pupae population per square meter in the Cannock Chase forest for 1975?

Exercise 3.4: Below are data of the pine looper moth from the the Moray forest district. Find a
Ricker model for this data. Then find the first 8 iterations. What does the model predict for the
population of pine looper pupae in 2000?

Year 1992 1993 1994 1995 1996 1997
pupae per sq. m. 6.0 3.2 4.4 10.0 24.0 30.0

Exercise 3.5: The Ricker model was recently used to study the density of wasp nests in New
Zealand beech forests. (See [1].) Each year wasps build nests in the trees of New Zealand’s South
Island. The wasps compete with rare birds for honeydew sap, and an overabundance of wasps
threatens both the birds and the trees. In the model, xn is the number of wasp nests per hectare
at each site.

Site 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Mt Misery 16.0 11.8 10.0 15.7 25.3 28.3 30.5 4.4 16.5 11.4 17.1 11.4 11.9
Watson 20.5 19.8 12.9 15.7 10.6 18.3 12.9 6.8 1.1 12.2 9.0 6.9 8.0

(a) Use the Watson data to find a Ricker model for the number of wasp nests, and sketch the
graph of the generating function. What does your model predict about the number of wasp
nests in 2002?

(b) If we use a model xn+1 = f(xn) to make predictions about a population, then ordered pairs
of actual population values (pn, pn+1) should lie approximately on the graph of the generating
function. Recall that if (x, y) is a point on the graph of the generating function f(x), the
x−coordinate represents the current population value xn, and the y−coordinate represents
xn+1 the predicted population value at the next time period. Plot the ordered pairs (pn, pn+1)
of actual Watson population values given in the chart below together with the generating
function you found in part (a).

pn 20.5 19.8 12.9 15.7 10.6 18.3 12.9 6.8 1.1 12.2 9.0 6.9
pn+1 19.8 12.9 15.7 10.6 18.3 12.9 6.8 1.1 12.2 9.0 6.9 8.0

(c) Based on part (b), does it seem reasonable to fit this data with a Ricker model?

Exercise 3.6: Coho salmon are one of the main fish varieties caught off the coast of southeastern
Alaska, and they have a life span of about three years. When the adult salmon are ready to spawn,
they swim from the ocean to the river bed where they were born. After this arduous journey, the
females lay their eggs, which the males then fertilize. Several months later, the eggs hatch. In
about a year, the young salmon start their migration to the ocean, where they live between one
and two years before they begin their own journey to the river bed spawning grounds.
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The following data set can be found in [10]. The fish counted here are called recruits. Recruits
are the salmon that are ready to begin migration from the river to the ocean, and which will be
available for fishing the following year.

Year 1980 1983 1986 1989 1992 1995 1998 2001
Coho Population 10714 6901 5617 7011 6596 4884 7420 5980
in Auke Creek fishery

(a) Fit this data with a Ricker model, and find the first 8 iterations. What does this model predict
the population of Coho salmon will be in the Auke Creek fishery in 2004 (when n = 8)?

(b) As in Exercise 3.5, plot the generating function and the actual population points (pn, pn+1).
Compare your plot with the Watson-wasp plot in Exercise 3.5. In which case does the Ricker
model appear to better fit the data?

(c) If f(xn) > xn (that is, the graph of f lies above the diagonal line y = x) then the fishery
could catch the surplus f(x) − x and be left with a fish population of the same size as the
last generation. The largest harvest of this type is called the maximum sustainable yield. Use
technology to find the maximum sustainable yield if α = 10 and β = 0.05, and determine the
population size that gives this harvest size.

3.3 Additional Exercises

Exercise 3.7: Find the fixed points of the Ricker model xn+1 = αe−βxnxn.

Exercise 3.8: In this exercise you will show that the graph of the Ricker model’s generating
function has a “one hump” shape.

(a) Find f ′(x) and determine where f is increasing or decreasing.

(b) Show that lim
x→∞ f(x) = 0.

(c) At what value of x is f(x) the greatest?

(d) What is the maximum value of f(x)?

(e) Based on the information in parts (a) through (c), sketch the graph of f .

Exercise 3.9: In the beetle exercise (Exercise 3.1) we saw that when α = 0.5, the model predicted
that the population would become extinct. When α = 1.5, the model showed that the population
would approach 2.73, which was (approximately) the fixed point ln α

β . So for some values of α the
fixed points are attracting, and for other values they are repelling. In this exercise you will find
the values of α for which the fixed points are attracting or repelling. To simplify the calculations,
let β = 1 so that f(x) = αxe−x.

(a) Show that the fixed points of f are x = 0 and x = ln α.

(b) Use cobweb diagrams to find an interval of values of α for which x = 0 is attracting.

(c) Use cobweb diagrams to find an interval of values of α for which x = lnα is attracting.
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(d) Use Theorem 2.1 to confirm your answers to parts (b) and (c).

Exercise 3.10: As with the logistic model, the Ricker model can exhibit very complicated be-
haviors. Let β = 1. Use cobwebbing to find a value of α for which an attracting 2-cycle appears.
Also, find a value of α for which an attracting 4-cycle appears.
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4 The Beverton-Holt Model

4.1 Introduction

The Beverton-Holt model, introduced by Beverton and Holt in 1957 (see [3]) is one of the most
commonly used stock and recruitment models in fishery management. It is used to describe the
population of insect or fish species, such as the pacific salmon, which reproduce just once during
their lifetime after which death is inevitable. The Beverton-Holt model depicts density dependent
recruitment of a population in which resources are limited and unequally shared.

Let xn represent the total population at time n of a species with initial population x0. (Time
can be given in minutes, days, years, etc.) Then xn+1 is the population at time n + 1. The
Beverton-Holt model is given by

xn+1 =
αxn

1 + βxn
. (7)

The constants α and β are estimated from population data, and α is positive. (We regard α
as the maximum growth rate and β as a measure of growth inhibition.) Equation (7) can be written
as xn+1 = f(xn) where f(x) = αx

1+βx is the generating function for the Beverton-Holt model.

Exercise 4.1: Equation (7) can also be written as xn+1 = g(xn)xn where g(x) =
α

1 + βx
is the

per-capita growth rate. What are some reasons why we need g to be positive and decreasing?

Exercise 4.2: Suppose that for a species of Atlantic salmon in the Western Arm Brook River it
was estimated that α = 84.2 and β = 0.0036. Graph the generating function. If x0 = 500, 000, find
the first 4 iterations of this model.

Exercise 4.3: Find the fixed points of the Beverton-Holt model.

Exercise 4.4: In this exercise you will examine the graph of the generating function f(x) = αx
1+βx .

Assume x ≥ 0.

(a) Find f ′(x).

(b) Determine the intervals of increase and decrease of f .

(c) Find lim
x→∞ f(x).

(d) Find f ′′(x).

(e) Determine the values of β and intervals of x where f is concave up or concave down.

Exercise 4.5: Consider a Beverton-Holt model with α = 2.5 and β = 1.5.

(a) Show that the fixed points are x = 0 and x = 1.

(b) Suppose x0 = 0.55. Find the first 20 iterations of f and describe the limiting behavior of the
iterations.

(c) Repeat part (b) for x0 = 1.4.
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(d) Draw cobweb diagrams for three different values of x0. Based on your diagrams and calcula-
tions, is x = 0 attracting or repelling? Is x = 1 attracting or repelling?

If K is the nonzero fixed point, it can be shown that β =
α− 1

K
and that the generating

function for the Beverton-Holt model has the form

f(x) =
αx

1 +
(

α−1
K

)
x

(8)

Exercise 4.6: Verify that if K is the nonzero fixed point, then the generating function has the
form in Equation (8).

Exercise 4.7: Consider the Beverton-Holt model given by Equation (8), and suppose K = 1.

(a) Construct a cobweb diagram for the following α values and initial conditions.

i. α = 2, x0 = 0.4

ii. α = 2, x0 = 1.4

iii. α = 0.7, x0 = 0.4

iv. α = 0.7, x0 = 1.1

(b) From your cobweb diagrams, make a conjecture about when the fixed point x = 0 will be
attracting or repelling. Make a conjecture about when the fixed point x = 1 will be attracting
or repelling.

Exercise 4.8: Consider the generating function f , given by Equation (8). Use Theorem 2.1 to
find values of α for which x = 0 is attracting. Repeat for the nonzero fixed point K.

4.2 Finding a Beverton-Holt Model

In this section we describe how to find a model of the form xn+1 = f(xn) where f is given by
Equation (8). That is, given a set of data, how does one find the parameters α and K that best
fit it? The data set in Table 1 is from experiments conducted by G. F. Gauss (1934a) on a single
cell organism, paramecium aurelia, a protozoa found in a number of fresh water ponds. In the data
set in Table 1, time n is measured in days and xn is the mean population density of paramecium,
measured in numbers of individuals per 0.5 cm3.

Exercise 4.9: Construct a scatter plot of the data in Table 1. Does it look like the graph of a
possible generating function f(x) for the Beverton-Holt model?

We can use Excel as we did in Section 3.2 to estimate the parameters α and K.

Exercise 4.10: Show that if we invert both sides of the Beverton-Holt equation xn+1 = αxn

1+(α−1
K )xn

and then multiply by xn and simplify, we obtain
xn

xn+1
=

1
α

+
(

α− 1
αK

)
xn.

We can treat the equation in Exercise 4.10 as a linear regression y = b + mx where y =
xn

xn+1
, b =

1
α

and m =
α− 1
αK

. Here y is the dependent variable and xn is the independent variable.
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Table 1: growth of paramecium aurelia in isolation

Day (n) Mean Density of P. Aurelia xn

0 2

1 –

2 14

3 34

4 56

5 94

6 189

7 266

8 330

9 416

10 507

11 580

12 610

13 513

14 593

15 557

16 560

17 522

18 565

19 517

20 500

21 585

22 500

23 495

24 525

25 510

Exercise 4.11: Use linear regression to find a Beverton-Holt model for the paramecium in Table
1. What does the Beverton-Holt model predict about the number of paramecium on day 50?

Exercise 4.12: Recall that in Exercise 3.6 we found a Ricker model for the salmon population in
the Auke Creek fishery from the following data set found in [10]:

Year 1980 1983 1986 1989 1992 1995 1998 2001
Population 10714 6901 5617 7011 6596 4884 7420 5980

Fit this data with a Beverton-Holt model and find the first 8 iterations of this model. What
does this model predict the population of Coho salmon will be in the Auke Creek fishery in 2004?
Sketch the graph of the generating function and the ordered pairs of actual population values
(pn, pn+1). Is it realistic to make predictions about the salmon population with this model? Why
or why not? How do your results compare with those you found using the Ricker model?

4.3 Finding a Closed Form

Unlike the Ricker model, the Beverton-Holt model may be rewritten in closed form. That is, we
can find an expression for xn in terms of x0, namely,

xn =
αn (α− 1)x0

(α− 1) + β (αn − 1)x0
. (9)
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Exercise 4.13: This exercise will guide you through the derivation of Equation (9).

(a) Use mathematical induction to show that if Equation (7) is iterated starting at x0, we obtain
the closed form solution

xn =
αnx0

1 + β
(∑n−1

i=0 αi
)

x0

(10)

(b) Show that
n−1∑

i=0

αi =
αn − 1
α− 1

. (Hint: Let sn = 1 + α + · · ·+ αn−1. Then consider αsn − sn.)

(c) Use part (b) to show that Equation (10) can be rewritten as Equation (9).

Exercise 4.14: The closed-form solution allows us to readily determine the long-term behavior
of populations predicted by the model. Suppose x0 > 0.

(a) Let α = 0.5. Use Equation (9) to determine the behavior of the population over time predicted
by the model.

(b) Repeat if α = 2.

(c) In general, what can you say if α > 1 or if α < 1 about the population over long periods of
time?

(d) Will the Beverton-Holt model ever have unpredictable results like the Ricker model? Why or
why not?
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5 Selected Solutions

Exercise 1.1: If x0 < −1, then |xn| grows without bound with xn alternating between positive
and negative values.

Exercise 1.2: If k > 1, then the birth rate is greater than the death rate. The population would
grow without bound.

Exercise 1.3: If k = 1 the birth rate equals the death rate. The population would remain at x0

forever. If 0 < k < 1, then the population would die out over time.

Exercise 2.1: Substitute yn = Lxn into Equation (2) and simplify.

Exercise 2.2: The fixed points are x = 0 and x = r−1
r .

Exercise 2.3: Consider xn+1 = f(xn) where f(x) = rx(1− x) and r > 0.

(a) Note that xn > 1 if and only if (1 − xn) < 0. Moreover, (1 − xn) < 0 if and only if
rxn(1− xn) < 0.

(b) The graph of f is a parabola that opens downward with vertex at (1
2 , r

4). Thus the maximum
value of f is r

4 and it occurs at x = 1
2 , half the carrying capacity.

(c) If r > 4 then we can show that there is some x0 ∈ (0, 1) such that the logistic model predicts
a negative population. If x0 = 1

2 , then by part (b) x1 = f(1
2) = r

4 > 1. By part (a), x2 < 0.

(d) If r < 4 then 0 < f(x) < 1 for all x ∈ (0, 1). (Note: if r = 4 and x0 = 1
2 , then x2 = 0.) The

two conditions 0 < x0 < L and r < 4 guarantee that xn > 0 for n = 1, 2, 3, . . ..

Exercise 2.4:

(a) About 240,000 flies.

(b) xn+1 = 1.5xn(1− xn) + 0.5×106

0.72×106

Exercise 2.5:

(a) It approaches 60% of the carrying capacity.

(b) In this case the population alternates between 62% and 70% of the carrying capacity.

(c) Over time, the population alternates between 38%, 83%, 50%, and 87% of the carrying
capacity.

Exercise 2.6: Logistic model xn+1 = 2xn(1− xn).

(a) The fixed points are x = 0 and x = 0.5.

(b) Iterations:
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i. For the initial value x0 = 0.1, we have the following population sequence: x1 = 0.18, x2 =
0.2952, x3 = 0.4161, x4 = 0.4859, x5 = 0.4996. The population appears to approach 50%
of the carrying capacity.

ii. For the initial value x0 = 1.1, we have the following population sequence: x1 = −0.22, x2 =
−0.5368, x3 = −1.6499, x4 = −8.7442, x5 = −170.411. The model is giving negative val-
ues.

iii. For the initial value x0 = 0.6, we have the following population sequence: x1 = 0.48, x2 =
0.4992, x3 = 0.4999, x4 = 0.5, x5 = 0.5. As in part (i), the population approaches 50%
of the carrying capacity.

iv. For the initial value x0 = 0.5, we have the following population sequence: x1 = 0.5, x2 =
0.5, x3 = 0.5, x4 = 0.5, x5 = 0.5. Again, the population is approaching 50% of the
carrying capacity.

(c) It appears that x = 0 is a repelling fixed point and x = 0.5 is an attracting fixed point.

Exercise 2.7: The fixed point x = 0 is attracting when 0 < k < 1 and repelling when k > 1. If
k = 1, then every point is fixed, and x = 0 is neither attracting nor repelling.

Exercise 2.8: Note that f ′(x) = r − 2rx. So |f ′(0)| = |r|. Thus x = 0 is attracting when
0 < r < 1. For the nonzero fixed point we have |f ′( r−1

r )| = |2− r|. We set |2− r| < 1 to find that
x = r−1

r is attracting when 1 < r < 3.

Exercise 2.9: The fixed points are x = 0 and x = 0.6. From cobweb diagrams, x = 0 is repelling
and x = 0.6 is attracting.

Exercise 2.10: From cobweb diagrams we find

(a) if 0 < r < 1, the fixed point x = 0 is attracting,

(b) if 1 < r < 3, the second fixed point x = r−1
r is attracting,

(c) When r = 3.7 we cannot determine the long-term behavior using cobwebbing.

Exercise 2.11: We find that f2(x) = r2x(1 − x)(1 − rx(1 − x)). The next step is to factor
f2(x)− x. Using the hint, we find that f2(x)− x = −x(rx + 1− r)(r2x2 − r2x− rx + r + 1). The
period 2 points are found by solving r2x2 − r2x − rx + r + 1 = 0. Using the quadratic formula

and simplifying, we find the roots are x =
r + 1±√r2 − 2r − 3

2r
. Therefore, there are period two

points when
√

r2 − 2r − 3 > 0, which is the case when r > 3.

Exercise 2.12: Let p = r+1+
√

r2−2r−3
2r and q = r+1−√r2−2r−3

2r be the period-2 points. By the Chain
Rule, (f2)′(p) = f ′(f(p))f ′(p) = f ′(q)f ′(p). After some algebra we find f ′(p)f ′(q) = −[(r−1)2−5].
We then find |f ′(p)f ′(q)| < 1 if 3 < r <

√
6 + 1.

Exercise 3.1:

(a) From ten iterations of the Ricker model with α = 8.86, β = 0.148 and an initial population of
20 beetles, the model predicts that the beetle population will oscillate between approximately
21.8 and 7.6 beetles.
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(b) i. For α = 0.5, the model predicts the beetle would become extinct.

ii. For α = 1.5 the model predicts the beetle population would reach 2.7 at generation 9
and will remain there.

iii. For α = 10, the model predicts the population will oscillate between 24.8 and 6.3 beetles.

(c) One answer is α = 14.

Exercise 3.2: After dividing both sides by xn and taking the natural log of both sides we have

ln
[
xn+1

xn

]
= ln(αe−βxnxn). Simplifying the right hand side using properties of the natural log gives

the desired result.

Exercise 3.3: It predicts the population will approach 3.5 per square meter.

Exercise 3.4: Using the linear regression process, we find that α = 1.396 and β = 0.001. The
first 8 iterations using this model are

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000
population 6.0 8.3 11.5 15.9 21.9 29.9 40.4 54.2 71.7

Exercise 3.5: (a) Using linear regression we find α = 2.112 and β = 0.067. The model predicts
11.156 nests per hectare in 2002.

Exercise 3.6:
(a) We find that α = 2.367 and β = 0.00013. The model predicts the population will be 6627
salmon in 2004.
(c) Let H(x) = f(x)− x. Then H(x) is maximum when H ′(x) = 0 or when f ′(x) = 1. If solve this
equation with the given α and β (using a numerical solver) we find x is approximately 15.63.

Exercise 3.7: We set αe−βxx = x and solve for x to find the fixed points are x = 0 and x = ln α
β

provided α > 1.

Exercise 3.8:

(a) f ′(x) = αe−βx(1− βx). f is increasing on (0, 1
β ) and decreasing for x > 1

β .

(b) Use L’Hopital’s rule.

(c) The maximum value occurs at 1
β .

(d) The maximum value is α
eβ .

Exercise 3.9: (d) The fixed point x = 0 is attracting for α < 1 and repelling for α > 1. The
nonzero fixed point is attracting for 1 < α < e2. This is confirmed using Theorem 2.1, since
|f ′(0)| = α and |f ′(lnα)| = |1− lnα|.

Exercise 3.10: From cobwebbing, it appears there’s a 2-cycle when α = 11 and a 4-cycle when
α = 14.
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Exercise 4.1: If g is positive, then the model will never predict negative populations. As the
population increases, the availability of resources decreases and so does the per capita growth rate.

Exercise 4.2: x0 = 500, 000, x1 = 23, 376, x2 = 23, 114, x3 = 23, 111, x4 = 23, 111.

Exercise 4.3: There are two fixed points: x = 0 and x =
α− 1

β
. In order for the non-zero fixed

point to be positive we need α > 1.

Exercise 4.4:

(a) f ′(x) = α
(1+βx)2

.

(b) f is always increasing.

(c) limx→∞ f(x) = α
β .

(d) f ′′(x) = −2αβ
(1+βx)3

.

(e) If β > 0, then f is concave down. If β < 0 then f is concave up for x < −1
β and concave down

for x > −1
β .

Exercise 4.5:

(a) To find the fixed points, solve 2.5x
1+1.5x = x.

(b) The iterations increase and approach 1.

(c) The iterations decrease and approach 1.

(d) x = 0 is repelling, and x = 1 is attracting.

Exercise 4.6: Set K equal to the nonzero fixed point α−1
β and solve for β. Then substitution

gives the desired result.

Exercise 4.8: We find |f ′(0)| = α and |f ′(K)| = 1
α . Thus x = 0 is attracting if α < 1 and K is

attracting if α > 1.

Exercise 4.11: We find xn+1 = 2.074xn
1+0.002xn

. The model predicts there will be 537 paramecium on
day 50.

Exercise 4.12: We find xn+1 = 8.899xn
1+0.0013xn

. The model predicts there will be 6076 salmon in 2004.

Exercise 4.14:

(a) Substituting α = 0.5 and taking the limit as n →∞ we have that xn → 0.

(b) Substituting α = 2 and taking the limit as n →∞ we have that xn → 1
β .

(c) If α < 1, then xn → 0. If α > 1, then xn → α−1
β .
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